4 / | | 2*(x - 1) | ---------*cos(n*x) dx | 3 | / -4
Integral((2*(x - 1)/3)*cos(n*x), (x, -4, 4))
// 2 \
|| x |
|| -- for n = 0|
|| 2 |
|| |
||/-cos(n*x) |
2*|<|---------- for n != 0 |
||< n |
// x for n = 0\ ||| | // x for n = 0\
|| | ||\ 0 otherwise | || |
/ 2*|
/-4*sin(4*n) |----------- for And(n > -oo, n < oo, n != 0) < 3*n | \ -16/3 otherwise
=
/-4*sin(4*n) |----------- for And(n > -oo, n < oo, n != 0) < 3*n | \ -16/3 otherwise
Piecewise((-4*sin(4*n)/(3*n), (n > -oo)∧(n < oo)∧(Ne(n, 0))), (-16/3, True))
Use the examples entering the upper and lower limits of integration.