Mister Exam

Other calculators

Integral of 3x^2-3 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 -4              
  /              
 |               
 |  /   2    \   
 |  \3*x  - 3/ dx
 |               
/                
0                
04(3x23)dx\int\limits_{0}^{-4} \left(3 x^{2} - 3\right)\, dx
Integral(3*x^2 - 3, (x, 0, -4))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      3x2dx=3x2dx\int 3 x^{2}\, dx = 3 \int x^{2}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

      So, the result is: x3x^{3}

    1. The integral of a constant is the constant times the variable of integration:

      (3)dx=3x\int \left(-3\right)\, dx = - 3 x

    The result is: x33xx^{3} - 3 x

  2. Now simplify:

    x(x23)x \left(x^{2} - 3\right)

  3. Add the constant of integration:

    x(x23)+constantx \left(x^{2} - 3\right)+ \mathrm{constant}


The answer is:

x(x23)+constantx \left(x^{2} - 3\right)+ \mathrm{constant}

The answer (Indefinite) [src]
  /                            
 |                             
 | /   2    \           3      
 | \3*x  - 3/ dx = C + x  - 3*x
 |                             
/                              
(3x23)dx=C+x33x\int \left(3 x^{2} - 3\right)\, dx = C + x^{3} - 3 x
The graph
-4.0-3.5-3.0-2.5-2.0-1.5-1.0-0.50.0-100100
The answer [src]
-52
52-52
=
=
-52
52-52
-52
Numerical answer [src]
-52.0
-52.0

    Use the examples entering the upper and lower limits of integration.