Mister Exam

Other calculators

Integral of 3x-3/√1-x²dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                      
  /                      
 |                       
 |  /        3      2\   
 |  |3*x - ----- - x | dx
 |  |        ___     |   
 |  \      \/ 1      /   
 |                       
/                        
0                        
$$\int\limits_{0}^{1} \left(- x^{2} + \left(3 x - \frac{3}{\sqrt{1}}\right)\right)\, dx$$
Integral(3*x - 3 - x^2, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      1. The integral of a constant is the constant times the variable of integration:

      The result is:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                           
 |                                    3      2
 | /        3      2\                x    3*x 
 | |3*x - ----- - x | dx = C - 3*x - -- + ----
 | |        ___     |                3     2  
 | \      \/ 1      /                         
 |                                            
/                                             
$$\int \left(- x^{2} + \left(3 x - \frac{3}{\sqrt{1}}\right)\right)\, dx = C - \frac{x^{3}}{3} + \frac{3 x^{2}}{2} - 3 x$$
The graph
The answer [src]
-11/6
$$- \frac{11}{6}$$
=
=
-11/6
$$- \frac{11}{6}$$
-11/6
Numerical answer [src]
-1.83333333333333
-1.83333333333333

    Use the examples entering the upper and lower limits of integration.