Mister Exam

Other calculators

Integral of 3√(7-cos*x)*sinxdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                           
  /                           
 |                            
 |      ____________          
 |  3*\/ 7 - cos(x) *sin(x) dx
 |                            
/                             
0                             
$$\int\limits_{0}^{1} 3 \sqrt{7 - \cos{\left(x \right)}} \sin{\left(x \right)}\, dx$$
Integral((3*sqrt(7 - cos(x)))*sin(x), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                  
 |                                                   
 |     ____________                               3/2
 | 3*\/ 7 - cos(x) *sin(x) dx = C + 2*(7 - cos(x))   
 |                                                   
/                                                    
$$\int 3 \sqrt{7 - \cos{\left(x \right)}} \sin{\left(x \right)}\, dx = C + 2 \left(7 - \cos{\left(x \right)}\right)^{\frac{3}{2}}$$
The graph
The answer [src]
       ___        ____________       ____________       
- 12*\/ 6  + 14*\/ 7 - cos(1)  - 2*\/ 7 - cos(1) *cos(1)
$$- 12 \sqrt{6} - 2 \sqrt{7 - \cos{\left(1 \right)}} \cos{\left(1 \right)} + 14 \sqrt{7 - \cos{\left(1 \right)}}$$
=
=
       ___        ____________       ____________       
- 12*\/ 6  + 14*\/ 7 - cos(1)  - 2*\/ 7 - cos(1) *cos(1)
$$- 12 \sqrt{6} - 2 \sqrt{7 - \cos{\left(1 \right)}} \cos{\left(1 \right)} + 14 \sqrt{7 - \cos{\left(1 \right)}}$$
-12*sqrt(6) + 14*sqrt(7 - cos(1)) - 2*sqrt(7 - cos(1))*cos(1)
Numerical answer [src]
3.44197487384122
3.44197487384122

    Use the examples entering the upper and lower limits of integration.