1 / | | ____________ | 3*\/ 7 - cos(x) *sin(x) dx | / 0
Integral((3*sqrt(7 - cos(x)))*sin(x), (x, 0, 1))
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
Add the constant of integration:
The answer is:
/ | | ____________ 3/2 | 3*\/ 7 - cos(x) *sin(x) dx = C + 2*(7 - cos(x)) | /
___ ____________ ____________ - 12*\/ 6 + 14*\/ 7 - cos(1) - 2*\/ 7 - cos(1) *cos(1)
=
___ ____________ ____________ - 12*\/ 6 + 14*\/ 7 - cos(1) - 2*\/ 7 - cos(1) *cos(1)
-12*sqrt(6) + 14*sqrt(7 - cos(1)) - 2*sqrt(7 - cos(1))*cos(1)
Use the examples entering the upper and lower limits of integration.