Mister Exam

Other calculators

Integral of 3*x^2+12*x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  3                 
  /                 
 |                  
 |  /   2       \   
 |  \3*x  + 12*x/ dx
 |                  
/                   
1                   
13(3x2+12x)dx\int\limits_{1}^{3} \left(3 x^{2} + 12 x\right)\, dx
Integral(3*x^2 + 12*x, (x, 1, 3))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      3x2dx=3x2dx\int 3 x^{2}\, dx = 3 \int x^{2}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

      So, the result is: x3x^{3}

    1. The integral of a constant times a function is the constant times the integral of the function:

      12xdx=12xdx\int 12 x\, dx = 12 \int x\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      So, the result is: 6x26 x^{2}

    The result is: x3+6x2x^{3} + 6 x^{2}

  2. Now simplify:

    x2(x+6)x^{2} \left(x + 6\right)

  3. Add the constant of integration:

    x2(x+6)+constantx^{2} \left(x + 6\right)+ \mathrm{constant}


The answer is:

x2(x+6)+constantx^{2} \left(x + 6\right)+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                
 |                                 
 | /   2       \           3      2
 | \3*x  + 12*x/ dx = C + x  + 6*x 
 |                                 
/                                  
(3x2+12x)dx=C+x3+6x2\int \left(3 x^{2} + 12 x\right)\, dx = C + x^{3} + 6 x^{2}
The graph
1.03.01.21.41.61.82.02.22.42.62.80100
The answer [src]
74
7474
=
=
74
7474
74
Numerical answer [src]
74.0
74.0

    Use the examples entering the upper and lower limits of integration.