Mister Exam

Other calculators

Integral of 3*e^(4x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |     4*x   
 |  3*E    dx
 |           
/            
0            
$$\int\limits_{0}^{1} 3 e^{4 x}\, dx$$
Integral(3*E^(4*x), (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of the exponential function is itself.

        So, the result is:

      Now substitute back in:

    So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                      
 |                    4*x
 |    4*x          3*e   
 | 3*E    dx = C + ------
 |                   4   
/                        
$$\int 3 e^{4 x}\, dx = C + \frac{3 e^{4 x}}{4}$$
The graph
The answer [src]
         4
  3   3*e 
- - + ----
  4    4  
$$- \frac{3}{4} + \frac{3 e^{4}}{4}$$
=
=
         4
  3   3*e 
- - + ----
  4    4  
$$- \frac{3}{4} + \frac{3 e^{4}}{4}$$
-3/4 + 3*exp(4)/4
Numerical answer [src]
40.1986125248582
40.1986125248582

    Use the examples entering the upper and lower limits of integration.