1 / | | 3 - 4*x | -------------- dx | 2 | 2*x - 3*x + 1 | / 0
Integral((3 - 4*x)/(2*x^2 - 3*x + 1), (x, 0, 1))
/ | | 3 - 4*x | 1*-------------- dx | 2 | 2*x - 3*x + 1 | /
3 - 4*x 2*2*x - 3 -------------- = - -------------- 2 2 2*x - 3*x + 1 2*x - 3*x + 1
/ | | 3 - 4*x | 1*-------------- dx | 2 = | 2*x - 3*x + 1 | /
/ | | 2*2*x - 3 - | -------------- dx | 2 | 2*x - 3*x + 1 | /
/ | | 2*2*x - 3 - | -------------- dx | 2 | 2*x - 3*x + 1 | /
2 u = -3*x + 2*x
/ | | 1 - | ----- du = -log(1 + u) | 1 + u | /
/ | | 2*2*x - 3 / 2\ - | -------------- dx = -log\1 - 3*x + 2*x / | 2 | 2*x - 3*x + 1 | /
/ 2\ C - log\1 - 3*x + 2*x /
/ | | 3 - 4*x / 2 \ | -------------- dx = C - log\2*x - 3*x + 1/ | 2 | 2*x - 3*x + 1 | /
Use the examples entering the upper and lower limits of integration.