Mister Exam

Other calculators

Integral of 3/sqrt(6x-5)+7/x^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                      
  /                      
 |                       
 |  /     3        7 \   
 |  |----------- + --| dx
 |  |  _________    2|   
 |  \\/ 6*x - 5    x /   
 |                       
/                        
0                        
$$\int\limits_{0}^{1} \left(\frac{3}{\sqrt{6 x - 5}} + \frac{7}{x^{2}}\right)\, dx$$
Integral(3/sqrt(6*x - 5) + 7/x^2, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of a constant is the constant times the variable of integration:

          So, the result is:

        Now substitute back in:

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

        PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=1, c=0, context=1/(x**2), symbol=x), False), (ArccothRule(a=1, b=1, c=0, context=1/(x**2), symbol=x), False), (ArctanhRule(a=1, b=1, c=0, context=1/(x**2), symbol=x), False)], context=1/(x**2), symbol=x)

      So, the result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                           
 |                            
 | /     3        7 \         
 | |----------- + --| dx = nan
 | |  _________    2|         
 | \\/ 6*x - 5    x /         
 |                            
/                             
$$\int \left(\frac{3}{\sqrt{6 x - 5}} + \frac{7}{x^{2}}\right)\, dx = \text{NaN}$$
The graph
The answer [src]
oo
$$\infty$$
=
=
oo
$$\infty$$
oo
Numerical answer [src]
(9.65526574564018e+19 - 2.17139424805375j)
(9.65526574564018e+19 - 2.17139424805375j)

    Use the examples entering the upper and lower limits of integration.