1 / | | / 3 7 \ | |----------- + --| dx | | _________ 2| | \\/ 6*x - 5 x / | / 0
Integral(3/sqrt(6*x - 5) + 7/x^2, (x, 0, 1))
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of a constant is the constant times the variable of integration:
So, the result is:
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=1, c=0, context=1/(x**2), symbol=x), False), (ArccothRule(a=1, b=1, c=0, context=1/(x**2), symbol=x), False), (ArctanhRule(a=1, b=1, c=0, context=1/(x**2), symbol=x), False)], context=1/(x**2), symbol=x)
So, the result is:
The result is:
Add the constant of integration:
The answer is:
/ | | / 3 7 \ | |----------- + --| dx = nan | | _________ 2| | \\/ 6*x - 5 x / | /
(9.65526574564018e+19 - 2.17139424805375j)
(9.65526574564018e+19 - 2.17139424805375j)
Use the examples entering the upper and lower limits of integration.