Integral of tgx^7sec^4x dx
The solution
Detail solution
-
Rewrite the integrand:
tan7(x)sec4(x)=(sec2(x)−1)3tan(x)sec4(x)
-
There are multiple ways to do this integral.
Method #1
-
Let u=sec2(x).
Then let du=2tan(x)sec2(x)dx and substitute du:
∫(2u4−23u3+23u2−2u)du
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2u4du=2∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
So, the result is: 10u5
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−23u3)du=−23∫u3du
-
The integral of un is n+1un+1 when n=−1:
∫u3du=4u4
So, the result is: −83u4
-
The integral of a constant times a function is the constant times the integral of the function:
∫23u2du=23∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: 2u3
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2u)du=−2∫udu
-
The integral of un is n+1un+1 when n=−1:
∫udu=2u2
So, the result is: −4u2
The result is: 10u5−83u4+2u3−4u2
Now substitute u back in:
10sec10(x)−83sec8(x)+2sec6(x)−4sec4(x)
Method #2
-
Rewrite the integrand:
(sec2(x)−1)3tan(x)sec4(x)=tan(x)sec10(x)−3tan(x)sec8(x)+3tan(x)sec6(x)−tan(x)sec4(x)
-
Integrate term-by-term:
-
Let u=sec10(x).
Then let du=10tan(x)sec10(x)dx and substitute 10du:
∫1001du
-
The integral of a constant times a function is the constant times the integral of the function:
∫101du=10∫1du
-
The integral of a constant is the constant times the variable of integration:
∫1du=u
So, the result is: 10u
Now substitute u back in:
10sec10(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−3tan(x)sec8(x))dx=−3∫tan(x)sec8(x)dx
-
Let u=sec8(x).
Then let du=8tan(x)sec8(x)dx and substitute 8du:
∫641du
-
The integral of a constant times a function is the constant times the integral of the function:
∫81du=8∫1du
-
The integral of a constant is the constant times the variable of integration:
∫1du=u
So, the result is: 8u
Now substitute u back in:
8sec8(x)
So, the result is: −83sec8(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫3tan(x)sec6(x)dx=3∫tan(x)sec6(x)dx
-
Let u=sec6(x).
Then let du=6tan(x)sec6(x)dx and substitute 6du:
∫361du
-
The integral of a constant times a function is the constant times the integral of the function:
∫61du=6∫1du
-
The integral of a constant is the constant times the variable of integration:
∫1du=u
So, the result is: 6u
Now substitute u back in:
6sec6(x)
So, the result is: 2sec6(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−tan(x)sec4(x))dx=−∫tan(x)sec4(x)dx
-
Let u=sec4(x).
Then let du=4tan(x)sec4(x)dx and substitute 4du:
∫161du
-
The integral of a constant times a function is the constant times the integral of the function:
∫41du=4∫1du
-
The integral of a constant is the constant times the variable of integration:
∫1du=u
So, the result is: 4u
Now substitute u back in:
4sec4(x)
So, the result is: −4sec4(x)
The result is: 10sec10(x)−83sec8(x)+2sec6(x)−4sec4(x)
Method #3
-
Rewrite the integrand:
(sec2(x)−1)3tan(x)sec4(x)=tan(x)sec10(x)−3tan(x)sec8(x)+3tan(x)sec6(x)−tan(x)sec4(x)
-
Integrate term-by-term:
-
Let u=sec10(x).
Then let du=10tan(x)sec10(x)dx and substitute 10du:
∫1001du
-
The integral of a constant times a function is the constant times the integral of the function:
∫101du=10∫1du
-
The integral of a constant is the constant times the variable of integration:
∫1du=u
So, the result is: 10u
Now substitute u back in:
10sec10(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−3tan(x)sec8(x))dx=−3∫tan(x)sec8(x)dx
-
Let u=sec8(x).
Then let du=8tan(x)sec8(x)dx and substitute 8du:
∫641du
-
The integral of a constant times a function is the constant times the integral of the function:
∫81du=8∫1du
-
The integral of a constant is the constant times the variable of integration:
∫1du=u
So, the result is: 8u
Now substitute u back in:
8sec8(x)
So, the result is: −83sec8(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫3tan(x)sec6(x)dx=3∫tan(x)sec6(x)dx
-
Let u=sec6(x).
Then let du=6tan(x)sec6(x)dx and substitute 6du:
∫361du
-
The integral of a constant times a function is the constant times the integral of the function:
∫61du=6∫1du
-
The integral of a constant is the constant times the variable of integration:
∫1du=u
So, the result is: 6u
Now substitute u back in:
6sec6(x)
So, the result is: 2sec6(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−tan(x)sec4(x))dx=−∫tan(x)sec4(x)dx
-
Let u=sec4(x).
Then let du=4tan(x)sec4(x)dx and substitute 4du:
∫161du
-
The integral of a constant times a function is the constant times the integral of the function:
∫41du=4∫1du
-
The integral of a constant is the constant times the variable of integration:
∫1du=u
So, the result is: 4u
Now substitute u back in:
4sec4(x)
So, the result is: −4sec4(x)
The result is: 10sec10(x)−83sec8(x)+2sec6(x)−4sec4(x)
-
Now simplify:
40(4sec6(x)−15sec4(x)+20sec2(x)−10)sec4(x)
-
Add the constant of integration:
40(4sec6(x)−15sec4(x)+20sec2(x)−10)sec4(x)+constant
The answer is:
40(4sec6(x)−15sec4(x)+20sec2(x)−10)sec4(x)+constant
The answer (Indefinite)
[src]
/
| 6 8 4 10
| 7 4 sec (x) 3*sec (x) sec (x) sec (x)
| tan (x)*sec (x) dx = C + ------- - --------- - ------- + --------
| 2 8 4 10
/
∫tan7(x)sec4(x)dx=C+10sec10(x)−83sec8(x)+2sec6(x)−4sec4(x)
The graph
2 6 4
1 4 - 15*cos (1) - 10*cos (1) + 20*cos (1)
-- + ----------------------------------------
40 10
40*cos (1)
401+40cos10(1)−15cos2(1)−10cos6(1)+20cos4(1)+4
=
2 6 4
1 4 - 15*cos (1) - 10*cos (1) + 20*cos (1)
-- + ----------------------------------------
40 10
40*cos (1)
401+40cos10(1)−15cos2(1)−10cos6(1)+20cos4(1)+4
Use the examples entering the upper and lower limits of integration.