Mister Exam

Other calculators


tgx^7sec^4x

Integral of tgx^7sec^4x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |     7       4      
 |  tan (x)*sec (x) dx
 |                    
/                     
0                     
01tan7(x)sec4(x)dx\int\limits_{0}^{1} \tan^{7}{\left(x \right)} \sec^{4}{\left(x \right)}\, dx
Integral(tan(x)^7*sec(x)^4, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    tan7(x)sec4(x)=(sec2(x)1)3tan(x)sec4(x)\tan^{7}{\left(x \right)} \sec^{4}{\left(x \right)} = \left(\sec^{2}{\left(x \right)} - 1\right)^{3} \tan{\left(x \right)} \sec^{4}{\left(x \right)}

  2. There are multiple ways to do this integral.

    Method #1

    1. Let u=sec2(x)u = \sec^{2}{\left(x \right)}.

      Then let du=2tan(x)sec2(x)dxdu = 2 \tan{\left(x \right)} \sec^{2}{\left(x \right)} dx and substitute dudu:

      (u423u32+3u22u2)du\int \left(\frac{u^{4}}{2} - \frac{3 u^{3}}{2} + \frac{3 u^{2}}{2} - \frac{u}{2}\right)\, du

      1. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          u42du=u4du2\int \frac{u^{4}}{2}\, du = \frac{\int u^{4}\, du}{2}

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

          So, the result is: u510\frac{u^{5}}{10}

        1. The integral of a constant times a function is the constant times the integral of the function:

          (3u32)du=3u3du2\int \left(- \frac{3 u^{3}}{2}\right)\, du = - \frac{3 \int u^{3}\, du}{2}

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u3du=u44\int u^{3}\, du = \frac{u^{4}}{4}

          So, the result is: 3u48- \frac{3 u^{4}}{8}

        1. The integral of a constant times a function is the constant times the integral of the function:

          3u22du=3u2du2\int \frac{3 u^{2}}{2}\, du = \frac{3 \int u^{2}\, du}{2}

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

          So, the result is: u32\frac{u^{3}}{2}

        1. The integral of a constant times a function is the constant times the integral of the function:

          (u2)du=udu2\int \left(- \frac{u}{2}\right)\, du = - \frac{\int u\, du}{2}

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            udu=u22\int u\, du = \frac{u^{2}}{2}

          So, the result is: u24- \frac{u^{2}}{4}

        The result is: u5103u48+u32u24\frac{u^{5}}{10} - \frac{3 u^{4}}{8} + \frac{u^{3}}{2} - \frac{u^{2}}{4}

      Now substitute uu back in:

      sec10(x)103sec8(x)8+sec6(x)2sec4(x)4\frac{\sec^{10}{\left(x \right)}}{10} - \frac{3 \sec^{8}{\left(x \right)}}{8} + \frac{\sec^{6}{\left(x \right)}}{2} - \frac{\sec^{4}{\left(x \right)}}{4}

    Method #2

    1. Rewrite the integrand:

      (sec2(x)1)3tan(x)sec4(x)=tan(x)sec10(x)3tan(x)sec8(x)+3tan(x)sec6(x)tan(x)sec4(x)\left(\sec^{2}{\left(x \right)} - 1\right)^{3} \tan{\left(x \right)} \sec^{4}{\left(x \right)} = \tan{\left(x \right)} \sec^{10}{\left(x \right)} - 3 \tan{\left(x \right)} \sec^{8}{\left(x \right)} + 3 \tan{\left(x \right)} \sec^{6}{\left(x \right)} - \tan{\left(x \right)} \sec^{4}{\left(x \right)}

    2. Integrate term-by-term:

      1. Let u=sec10(x)u = \sec^{10}{\left(x \right)}.

        Then let du=10tan(x)sec10(x)dxdu = 10 \tan{\left(x \right)} \sec^{10}{\left(x \right)} dx and substitute du10\frac{du}{10}:

        1100du\int \frac{1}{100}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          110du=1du10\int \frac{1}{10}\, du = \frac{\int 1\, du}{10}

          1. The integral of a constant is the constant times the variable of integration:

            1du=u\int 1\, du = u

          So, the result is: u10\frac{u}{10}

        Now substitute uu back in:

        sec10(x)10\frac{\sec^{10}{\left(x \right)}}{10}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (3tan(x)sec8(x))dx=3tan(x)sec8(x)dx\int \left(- 3 \tan{\left(x \right)} \sec^{8}{\left(x \right)}\right)\, dx = - 3 \int \tan{\left(x \right)} \sec^{8}{\left(x \right)}\, dx

        1. Let u=sec8(x)u = \sec^{8}{\left(x \right)}.

          Then let du=8tan(x)sec8(x)dxdu = 8 \tan{\left(x \right)} \sec^{8}{\left(x \right)} dx and substitute du8\frac{du}{8}:

          164du\int \frac{1}{64}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            18du=1du8\int \frac{1}{8}\, du = \frac{\int 1\, du}{8}

            1. The integral of a constant is the constant times the variable of integration:

              1du=u\int 1\, du = u

            So, the result is: u8\frac{u}{8}

          Now substitute uu back in:

          sec8(x)8\frac{\sec^{8}{\left(x \right)}}{8}

        So, the result is: 3sec8(x)8- \frac{3 \sec^{8}{\left(x \right)}}{8}

      1. The integral of a constant times a function is the constant times the integral of the function:

        3tan(x)sec6(x)dx=3tan(x)sec6(x)dx\int 3 \tan{\left(x \right)} \sec^{6}{\left(x \right)}\, dx = 3 \int \tan{\left(x \right)} \sec^{6}{\left(x \right)}\, dx

        1. Let u=sec6(x)u = \sec^{6}{\left(x \right)}.

          Then let du=6tan(x)sec6(x)dxdu = 6 \tan{\left(x \right)} \sec^{6}{\left(x \right)} dx and substitute du6\frac{du}{6}:

          136du\int \frac{1}{36}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            16du=1du6\int \frac{1}{6}\, du = \frac{\int 1\, du}{6}

            1. The integral of a constant is the constant times the variable of integration:

              1du=u\int 1\, du = u

            So, the result is: u6\frac{u}{6}

          Now substitute uu back in:

          sec6(x)6\frac{\sec^{6}{\left(x \right)}}{6}

        So, the result is: sec6(x)2\frac{\sec^{6}{\left(x \right)}}{2}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (tan(x)sec4(x))dx=tan(x)sec4(x)dx\int \left(- \tan{\left(x \right)} \sec^{4}{\left(x \right)}\right)\, dx = - \int \tan{\left(x \right)} \sec^{4}{\left(x \right)}\, dx

        1. Let u=sec4(x)u = \sec^{4}{\left(x \right)}.

          Then let du=4tan(x)sec4(x)dxdu = 4 \tan{\left(x \right)} \sec^{4}{\left(x \right)} dx and substitute du4\frac{du}{4}:

          116du\int \frac{1}{16}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            14du=1du4\int \frac{1}{4}\, du = \frac{\int 1\, du}{4}

            1. The integral of a constant is the constant times the variable of integration:

              1du=u\int 1\, du = u

            So, the result is: u4\frac{u}{4}

          Now substitute uu back in:

          sec4(x)4\frac{\sec^{4}{\left(x \right)}}{4}

        So, the result is: sec4(x)4- \frac{\sec^{4}{\left(x \right)}}{4}

      The result is: sec10(x)103sec8(x)8+sec6(x)2sec4(x)4\frac{\sec^{10}{\left(x \right)}}{10} - \frac{3 \sec^{8}{\left(x \right)}}{8} + \frac{\sec^{6}{\left(x \right)}}{2} - \frac{\sec^{4}{\left(x \right)}}{4}

    Method #3

    1. Rewrite the integrand:

      (sec2(x)1)3tan(x)sec4(x)=tan(x)sec10(x)3tan(x)sec8(x)+3tan(x)sec6(x)tan(x)sec4(x)\left(\sec^{2}{\left(x \right)} - 1\right)^{3} \tan{\left(x \right)} \sec^{4}{\left(x \right)} = \tan{\left(x \right)} \sec^{10}{\left(x \right)} - 3 \tan{\left(x \right)} \sec^{8}{\left(x \right)} + 3 \tan{\left(x \right)} \sec^{6}{\left(x \right)} - \tan{\left(x \right)} \sec^{4}{\left(x \right)}

    2. Integrate term-by-term:

      1. Let u=sec10(x)u = \sec^{10}{\left(x \right)}.

        Then let du=10tan(x)sec10(x)dxdu = 10 \tan{\left(x \right)} \sec^{10}{\left(x \right)} dx and substitute du10\frac{du}{10}:

        1100du\int \frac{1}{100}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          110du=1du10\int \frac{1}{10}\, du = \frac{\int 1\, du}{10}

          1. The integral of a constant is the constant times the variable of integration:

            1du=u\int 1\, du = u

          So, the result is: u10\frac{u}{10}

        Now substitute uu back in:

        sec10(x)10\frac{\sec^{10}{\left(x \right)}}{10}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (3tan(x)sec8(x))dx=3tan(x)sec8(x)dx\int \left(- 3 \tan{\left(x \right)} \sec^{8}{\left(x \right)}\right)\, dx = - 3 \int \tan{\left(x \right)} \sec^{8}{\left(x \right)}\, dx

        1. Let u=sec8(x)u = \sec^{8}{\left(x \right)}.

          Then let du=8tan(x)sec8(x)dxdu = 8 \tan{\left(x \right)} \sec^{8}{\left(x \right)} dx and substitute du8\frac{du}{8}:

          164du\int \frac{1}{64}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            18du=1du8\int \frac{1}{8}\, du = \frac{\int 1\, du}{8}

            1. The integral of a constant is the constant times the variable of integration:

              1du=u\int 1\, du = u

            So, the result is: u8\frac{u}{8}

          Now substitute uu back in:

          sec8(x)8\frac{\sec^{8}{\left(x \right)}}{8}

        So, the result is: 3sec8(x)8- \frac{3 \sec^{8}{\left(x \right)}}{8}

      1. The integral of a constant times a function is the constant times the integral of the function:

        3tan(x)sec6(x)dx=3tan(x)sec6(x)dx\int 3 \tan{\left(x \right)} \sec^{6}{\left(x \right)}\, dx = 3 \int \tan{\left(x \right)} \sec^{6}{\left(x \right)}\, dx

        1. Let u=sec6(x)u = \sec^{6}{\left(x \right)}.

          Then let du=6tan(x)sec6(x)dxdu = 6 \tan{\left(x \right)} \sec^{6}{\left(x \right)} dx and substitute du6\frac{du}{6}:

          136du\int \frac{1}{36}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            16du=1du6\int \frac{1}{6}\, du = \frac{\int 1\, du}{6}

            1. The integral of a constant is the constant times the variable of integration:

              1du=u\int 1\, du = u

            So, the result is: u6\frac{u}{6}

          Now substitute uu back in:

          sec6(x)6\frac{\sec^{6}{\left(x \right)}}{6}

        So, the result is: sec6(x)2\frac{\sec^{6}{\left(x \right)}}{2}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (tan(x)sec4(x))dx=tan(x)sec4(x)dx\int \left(- \tan{\left(x \right)} \sec^{4}{\left(x \right)}\right)\, dx = - \int \tan{\left(x \right)} \sec^{4}{\left(x \right)}\, dx

        1. Let u=sec4(x)u = \sec^{4}{\left(x \right)}.

          Then let du=4tan(x)sec4(x)dxdu = 4 \tan{\left(x \right)} \sec^{4}{\left(x \right)} dx and substitute du4\frac{du}{4}:

          116du\int \frac{1}{16}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            14du=1du4\int \frac{1}{4}\, du = \frac{\int 1\, du}{4}

            1. The integral of a constant is the constant times the variable of integration:

              1du=u\int 1\, du = u

            So, the result is: u4\frac{u}{4}

          Now substitute uu back in:

          sec4(x)4\frac{\sec^{4}{\left(x \right)}}{4}

        So, the result is: sec4(x)4- \frac{\sec^{4}{\left(x \right)}}{4}

      The result is: sec10(x)103sec8(x)8+sec6(x)2sec4(x)4\frac{\sec^{10}{\left(x \right)}}{10} - \frac{3 \sec^{8}{\left(x \right)}}{8} + \frac{\sec^{6}{\left(x \right)}}{2} - \frac{\sec^{4}{\left(x \right)}}{4}

  3. Now simplify:

    (4sec6(x)15sec4(x)+20sec2(x)10)sec4(x)40\frac{\left(4 \sec^{6}{\left(x \right)} - 15 \sec^{4}{\left(x \right)} + 20 \sec^{2}{\left(x \right)} - 10\right) \sec^{4}{\left(x \right)}}{40}

  4. Add the constant of integration:

    (4sec6(x)15sec4(x)+20sec2(x)10)sec4(x)40+constant\frac{\left(4 \sec^{6}{\left(x \right)} - 15 \sec^{4}{\left(x \right)} + 20 \sec^{2}{\left(x \right)} - 10\right) \sec^{4}{\left(x \right)}}{40}+ \mathrm{constant}


The answer is:

(4sec6(x)15sec4(x)+20sec2(x)10)sec4(x)40+constant\frac{\left(4 \sec^{6}{\left(x \right)} - 15 \sec^{4}{\left(x \right)} + 20 \sec^{2}{\left(x \right)} - 10\right) \sec^{4}{\left(x \right)}}{40}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                                 
 |                             6           8         4         10   
 |    7       4             sec (x)   3*sec (x)   sec (x)   sec  (x)
 | tan (x)*sec (x) dx = C + ------- - --------- - ------- + --------
 |                             2          8          4         10   
/                                                                   
tan7(x)sec4(x)dx=C+sec10(x)103sec8(x)8+sec6(x)2sec4(x)4\int \tan^{7}{\left(x \right)} \sec^{4}{\left(x \right)}\, dx = C + \frac{\sec^{10}{\left(x \right)}}{10} - \frac{3 \sec^{8}{\left(x \right)}}{8} + \frac{\sec^{6}{\left(x \right)}}{2} - \frac{\sec^{4}{\left(x \right)}}{4}
The graph
0.001.000.100.200.300.400.500.600.700.800.90500-250
The answer [src]
               2            6            4   
1    4 - 15*cos (1) - 10*cos (1) + 20*cos (1)
-- + ----------------------------------------
40                       10                  
                   40*cos  (1)               
140+15cos2(1)10cos6(1)+20cos4(1)+440cos10(1)\frac{1}{40} + \frac{- 15 \cos^{2}{\left(1 \right)} - 10 \cos^{6}{\left(1 \right)} + 20 \cos^{4}{\left(1 \right)} + 4}{40 \cos^{10}{\left(1 \right)}}
=
=
               2            6            4   
1    4 - 15*cos (1) - 10*cos (1) + 20*cos (1)
-- + ----------------------------------------
40                       10                  
                   40*cos  (1)               
140+15cos2(1)10cos6(1)+20cos4(1)+440cos10(1)\frac{1}{40} + \frac{- 15 \cos^{2}{\left(1 \right)} - 10 \cos^{6}{\left(1 \right)} + 20 \cos^{4}{\left(1 \right)} + 4}{40 \cos^{10}{\left(1 \right)}}
Numerical answer [src]
12.7214684874328
12.7214684874328
The graph
Integral of tgx^7sec^4x dx

    Use the examples entering the upper and lower limits of integration.