Mister Exam

Other calculators

Integral of tg(x)*ln*cos(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi                        
 --                        
 4                         
  /                        
 |                         
 |  tan(x)*log(x)*cos(x) dx
 |                         
/                          
0                          
$$\int\limits_{0}^{\frac{\pi}{4}} \log{\left(x \right)} \cos{\left(x \right)} \tan{\left(x \right)}\, dx$$
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. The integral of sine is negative cosine:

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

      CiRule(a=1, b=0, context=cos(x)/x, symbol=x)

    So, the result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                   
 |                                                    
 | tan(x)*log(x)*cos(x) dx = C - cos(x)*log(x) + Ci(x)
 |                                                    
/                                                     
$$-\cos x\,\log x-{{\Gamma\left(0 , i\,x\right)+\Gamma\left(0 , -i\,x \right)}\over{2}}$$
The answer [src]
                ___    /pi\         
              \/ 2 *log|--|         
                       \4 /     /pi\
-EulerGamma - ------------- + Ci|--|
                    2           \4 /
$$- \gamma - \frac{\sqrt{2} \log{\left(\frac{\pi}{4} \right)}}{2} + \operatorname{Ci}{\left(\frac{\pi}{4} \right)}$$
=
=
                ___    /pi\         
              \/ 2 *log|--|         
                       \4 /     /pi\
-EulerGamma - ------------- + Ci|--|
                    2           \4 /
$$- \gamma - \frac{\sqrt{2} \log{\left(\frac{\pi}{4} \right)}}{2} + \operatorname{Ci}{\left(\frac{\pi}{4} \right)}$$
Numerical answer [src]
-0.221055464994203
-0.221055464994203

    Use the examples entering the upper and lower limits of integration.