Mister Exam

Other calculators


tg(3x)^2

Integral of tg(3x)^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |     2        
 |  tan (3*x) dx
 |              
/               
0               
01tan2(3x)dx\int\limits_{0}^{1} \tan^{2}{\left(3 x \right)}\, dx
Integral(tan(3*x)^2, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    tan2(3x)=sec2(3x)1\tan^{2}{\left(3 x \right)} = \sec^{2}{\left(3 x \right)} - 1

  2. Integrate term-by-term:

    1. Don't know the steps in finding this integral.

      But the integral is

      sin(3x)3cos(3x)\frac{\sin{\left(3 x \right)}}{3 \cos{\left(3 x \right)}}

    1. The integral of a constant is the constant times the variable of integration:

      (1)dx=x\int \left(-1\right)\, dx = - x

    The result is: x+sin(3x)3cos(3x)- x + \frac{\sin{\left(3 x \right)}}{3 \cos{\left(3 x \right)}}

  3. Now simplify:

    x+tan(3x)3- x + \frac{\tan{\left(3 x \right)}}{3}

  4. Add the constant of integration:

    x+tan(3x)3+constant- x + \frac{\tan{\left(3 x \right)}}{3}+ \mathrm{constant}


The answer is:

x+tan(3x)3+constant- x + \frac{\tan{\left(3 x \right)}}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                 
 |                                  
 |    2                    sin(3*x) 
 | tan (3*x) dx = C - x + ----------
 |                        3*cos(3*x)
/                                   
tan2(3x)dx=Cx+sin(3x)3cos(3x)\int \tan^{2}{\left(3 x \right)}\, dx = C - x + \frac{\sin{\left(3 x \right)}}{3 \cos{\left(3 x \right)}}
The graph
0.001.000.100.200.300.400.500.600.700.800.90-2000020000
The answer [src]
oo
\infty
=
=
oo
\infty
oo
Numerical answer [src]
1605.32063557435
1605.32063557435
The graph
Integral of tg(3x)^2 dx

    Use the examples entering the upper and lower limits of integration.