Mister Exam

Other calculators

Integral of tg(3lnx-5)/(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |  tan(3*log(x) - 5)   
 |  ----------------- dx
 |          x           
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \frac{\tan{\left(3 \log{\left(x \right)} - 5 \right)}}{x}\, dx$$
Integral(tan(3*log(x) - 5)/x, (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Rewrite the integrand:

        2. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is .

            So, the result is:

          Now substitute back in:

        So, the result is:

      Now substitute back in:

    Method #2

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. Rewrite the integrand:

            2. Let .

              Then let and substitute :

              1. The integral of a constant times a function is the constant times the integral of the function:

                1. The integral of is .

                So, the result is:

              Now substitute back in:

            So, the result is:

          Now substitute back in:

        So, the result is:

      Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                 
 |                                                  
 | tan(3*log(x) - 5)          log(cos(3*log(x) - 5))
 | ----------------- dx = C - ----------------------
 |         x                            3           
 |                                                  
/                                                   
$$\int \frac{\tan{\left(3 \log{\left(x \right)} - 5 \right)}}{x}\, dx = C - \frac{\log{\left(\cos{\left(3 \log{\left(x \right)} - 5 \right)} \right)}}{3}$$
The answer [src]
  1                      
  /                      
 |                       
 |  tan(-5 + 3*log(x))   
 |  ------------------ dx
 |          x            
 |                       
/                        
0                        
$$\int\limits_{0}^{1} \frac{\tan{\left(3 \log{\left(x \right)} - 5 \right)}}{x}\, dx$$
=
=
  1                      
  /                      
 |                       
 |  tan(-5 + 3*log(x))   
 |  ------------------ dx
 |          x            
 |                       
/                        
0                        
$$\int\limits_{0}^{1} \frac{\tan{\left(3 \log{\left(x \right)} - 5 \right)}}{x}\, dx$$
Integral(tan(-5 + 3*log(x))/x, (x, 0, 1))
Numerical answer [src]
12.9691735614578
12.9691735614578

    Use the examples entering the upper and lower limits of integration.