Mister Exam

Other calculators

Integral of 10^x+(1/log(10)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |  /  x      1   \   
 |  |10  + -------| dx
 |  \      log(10)/   
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \left(10^{x} + \frac{1}{\log{\left(10 \right)}}\right)\, dx$$
Integral(10^x + 1/log(10), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of an exponential function is itself divided by the natural logarithm of the base.

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                          
 |                                        x  
 | /  x      1   \             x        10   
 | |10  + -------| dx = C + ------- + -------
 | \      log(10)/          log(10)   log(10)
 |                                           
/                                            
$$\int \left(10^{x} + \frac{1}{\log{\left(10 \right)}}\right)\, dx = \frac{10^{x}}{\log{\left(10 \right)}} + C + \frac{x}{\log{\left(10 \right)}}$$
The graph
The answer [src]
   10  
-------
log(10)
$$\frac{10}{\log{\left(10 \right)}}$$
=
=
   10  
-------
log(10)
$$\frac{10}{\log{\left(10 \right)}}$$
10/log(10)
Numerical answer [src]
4.34294481903252
4.34294481903252

    Use the examples entering the upper and lower limits of integration.