Mister Exam

Integral of tan(y)dy dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |  tan(y) dy
 |           
/            
0            
01tan(y)dy\int\limits_{0}^{1} \tan{\left(y \right)}\, dy
Integral(tan(y), (y, 0, 1))
Detail solution
  1. Rewrite the integrand:

    tan(y)=sin(y)cos(y)\tan{\left(y \right)} = \frac{\sin{\left(y \right)}}{\cos{\left(y \right)}}

  2. Let u=cos(y)u = \cos{\left(y \right)}.

    Then let du=sin(y)dydu = - \sin{\left(y \right)} dy and substitute du- du:

    (1u)du\int \left(- \frac{1}{u}\right)\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      1udu=1udu\int \frac{1}{u}\, du = - \int \frac{1}{u}\, du

      1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

      So, the result is: log(u)- \log{\left(u \right)}

    Now substitute uu back in:

    log(cos(y))- \log{\left(\cos{\left(y \right)} \right)}

  3. Add the constant of integration:

    log(cos(y))+constant- \log{\left(\cos{\left(y \right)} \right)}+ \mathrm{constant}


The answer is:

log(cos(y))+constant- \log{\left(\cos{\left(y \right)} \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                           
 |                            
 | tan(y) dy = C - log(cos(y))
 |                            
/                             
tan(y)dy=Clog(cos(y))\int \tan{\left(y \right)}\, dy = C - \log{\left(\cos{\left(y \right)} \right)}
The graph
0.001.000.100.200.300.400.500.600.700.800.9002
The answer [src]
-log(cos(1))
log(cos(1))- \log{\left(\cos{\left(1 \right)} \right)}
=
=
-log(cos(1))
log(cos(1))- \log{\left(\cos{\left(1 \right)} \right)}
-log(cos(1))
Numerical answer [src]
0.615626470386014
0.615626470386014

    Use the examples entering the upper and lower limits of integration.