Mister Exam

Integral of sindx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |  sin(d)*x dx
 |             
/              
0              
01xsin(d)dx\int\limits_{0}^{1} x \sin{\left(d \right)}\, dx
Integral(sin(d)*x, (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    xsin(d)dx=sin(d)xdx\int x \sin{\left(d \right)}\, dx = \sin{\left(d \right)} \int x\, dx

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      xdx=x22\int x\, dx = \frac{x^{2}}{2}

    So, the result is: x2sin(d)2\frac{x^{2} \sin{\left(d \right)}}{2}

  2. Add the constant of integration:

    x2sin(d)2+constant\frac{x^{2} \sin{\left(d \right)}}{2}+ \mathrm{constant}


The answer is:

x2sin(d)2+constant\frac{x^{2} \sin{\left(d \right)}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                   2       
 |                   x *sin(d)
 | sin(d)*x dx = C + ---------
 |                       2    
/                             
sindx22{{\sin d\,x^2}\over{2}}
The answer [src]
sin(d)
------
  2   
sind2{{\sin d}\over{2}}
=
=
sin(d)
------
  2   
sin(d)2\frac{\sin{\left(d \right)}}{2}

    Use the examples entering the upper and lower limits of integration.