Mister Exam

Other calculators

Integral of tan(x)(sec(x))^3 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |            3      
 |  tan(x)*sec (x) dx
 |                   
/                    
0                    
$$\int\limits_{0}^{1} \tan{\left(x \right)} \sec^{3}{\left(x \right)}\, dx$$
Integral(tan(x)*sec(x)^3, (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of is when :

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                               
 |                            3   
 |           3             sec (x)
 | tan(x)*sec (x) dx = C + -------
 |                            3   
/                                 
$$\int \tan{\left(x \right)} \sec^{3}{\left(x \right)}\, dx = C + \frac{\sec^{3}{\left(x \right)}}{3}$$
The graph
The answer [src]
  1       1    
- - + ---------
  3        3   
      3*cos (1)
$$- \frac{1}{3} + \frac{1}{3 \cos^{3}{\left(1 \right)}}$$
=
=
  1       1    
- - + ---------
  3        3   
      3*cos (1)
$$- \frac{1}{3} + \frac{1}{3 \cos^{3}{\left(1 \right)}}$$
-1/3 + 1/(3*cos(1)^3)
Numerical answer [src]
1.7800013582586
1.7800013582586

    Use the examples entering the upper and lower limits of integration.