Mister Exam

Other calculators


tan^2(x)sec^4(x)

Integral of tan^2(x)sec^4(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |     2       4      
 |  tan (x)*sec (x) dx
 |                    
/                     
0                     
01tan2(x)sec4(x)dx\int\limits_{0}^{1} \tan^{2}{\left(x \right)} \sec^{4}{\left(x \right)}\, dx
Integral(tan(x)^2*sec(x)^4, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    tan2(x)sec4(x)=(tan2(x)+1)tan2(x)sec2(x)\tan^{2}{\left(x \right)} \sec^{4}{\left(x \right)} = \left(\tan^{2}{\left(x \right)} + 1\right) \tan^{2}{\left(x \right)} \sec^{2}{\left(x \right)}

  2. There are multiple ways to do this integral.

    Method #1

    1. Let u=tan(x)u = \tan{\left(x \right)}.

      Then let du=(tan2(x)+1)dxdu = \left(\tan^{2}{\left(x \right)} + 1\right) dx and substitute dudu:

      (u4+u2)du\int \left(u^{4} + u^{2}\right)\, du

      1. Integrate term-by-term:

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

        The result is: u55+u33\frac{u^{5}}{5} + \frac{u^{3}}{3}

      Now substitute uu back in:

      tan5(x)5+tan3(x)3\frac{\tan^{5}{\left(x \right)}}{5} + \frac{\tan^{3}{\left(x \right)}}{3}

    Method #2

    1. Rewrite the integrand:

      (tan2(x)+1)tan2(x)sec2(x)=tan4(x)sec2(x)+tan2(x)sec2(x)\left(\tan^{2}{\left(x \right)} + 1\right) \tan^{2}{\left(x \right)} \sec^{2}{\left(x \right)} = \tan^{4}{\left(x \right)} \sec^{2}{\left(x \right)} + \tan^{2}{\left(x \right)} \sec^{2}{\left(x \right)}

    2. Integrate term-by-term:

      1. Let u=tan(x)u = \tan{\left(x \right)}.

        Then let du=(tan2(x)+1)dxdu = \left(\tan^{2}{\left(x \right)} + 1\right) dx and substitute dudu:

        u4du\int u^{4}\, du

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

        Now substitute uu back in:

        tan5(x)5\frac{\tan^{5}{\left(x \right)}}{5}

      1. Let u=tan(x)u = \tan{\left(x \right)}.

        Then let du=(tan2(x)+1)dxdu = \left(\tan^{2}{\left(x \right)} + 1\right) dx and substitute dudu:

        u2du\int u^{2}\, du

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

        Now substitute uu back in:

        tan3(x)3\frac{\tan^{3}{\left(x \right)}}{3}

      The result is: tan5(x)5+tan3(x)3\frac{\tan^{5}{\left(x \right)}}{5} + \frac{\tan^{3}{\left(x \right)}}{3}

    Method #3

    1. Rewrite the integrand:

      (tan2(x)+1)tan2(x)sec2(x)=tan4(x)sec2(x)+tan2(x)sec2(x)\left(\tan^{2}{\left(x \right)} + 1\right) \tan^{2}{\left(x \right)} \sec^{2}{\left(x \right)} = \tan^{4}{\left(x \right)} \sec^{2}{\left(x \right)} + \tan^{2}{\left(x \right)} \sec^{2}{\left(x \right)}

    2. Integrate term-by-term:

      1. Let u=tan(x)u = \tan{\left(x \right)}.

        Then let du=(tan2(x)+1)dxdu = \left(\tan^{2}{\left(x \right)} + 1\right) dx and substitute dudu:

        u4du\int u^{4}\, du

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

        Now substitute uu back in:

        tan5(x)5\frac{\tan^{5}{\left(x \right)}}{5}

      1. Let u=tan(x)u = \tan{\left(x \right)}.

        Then let du=(tan2(x)+1)dxdu = \left(\tan^{2}{\left(x \right)} + 1\right) dx and substitute dudu:

        u2du\int u^{2}\, du

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

        Now substitute uu back in:

        tan3(x)3\frac{\tan^{3}{\left(x \right)}}{3}

      The result is: tan5(x)5+tan3(x)3\frac{\tan^{5}{\left(x \right)}}{5} + \frac{\tan^{3}{\left(x \right)}}{3}

  3. Add the constant of integration:

    tan5(x)5+tan3(x)3+constant\frac{\tan^{5}{\left(x \right)}}{5} + \frac{\tan^{3}{\left(x \right)}}{3}+ \mathrm{constant}


The answer is:

tan5(x)5+tan3(x)3+constant\frac{\tan^{5}{\left(x \right)}}{5} + \frac{\tan^{3}{\left(x \right)}}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                          
 |                             3         5   
 |    2       4             tan (x)   tan (x)
 | tan (x)*sec (x) dx = C + ------- + -------
 |                             3         5   
/                                            
3tan5x+5tan3x15{{3\,\tan ^5x+5\,\tan ^3x}\over{15}}
The graph
0.001.000.100.200.300.400.500.600.700.800.90050
The answer [src]
   2*sin(1)     sin(1)       sin(1) 
- --------- - ---------- + ---------
  15*cos(1)         3           5   
              15*cos (1)   5*cos (1)
3tan51+5tan3115{{3\,\tan ^51+5\,\tan ^31}\over{15}}
=
=
   2*sin(1)     sin(1)       sin(1) 
- --------- - ---------- + ---------
  15*cos(1)         3           5   
              15*cos (1)   5*cos (1)
sin(1)15cos3(1)2sin(1)15cos(1)+sin(1)5cos5(1)- \frac{\sin{\left(1 \right)}}{15 \cos^{3}{\left(1 \right)}} - \frac{2 \sin{\left(1 \right)}}{15 \cos{\left(1 \right)}} + \frac{\sin{\left(1 \right)}}{5 \cos^{5}{\left(1 \right)}}
Numerical answer [src]
3.09166393502534
3.09166393502534
The graph
Integral of tan^2(x)sec^4(x) dx

    Use the examples entering the upper and lower limits of integration.