Mister Exam

Other calculators


tan^2(x)sec^4(x)
  • How to use it?

  • Integral of d{x}:
  • Integral of xe Integral of xe
  • Integral of 3x² Integral of 3x²
  • Integral of e^-t Integral of e^-t
  • Integral of e^(x*y)
  • Identical expressions

  • tan^ two (x)sec^ four (x)
  • tangent of squared (x)sec to the power of 4(x)
  • tangent of to the power of two (x)sec to the power of four (x)
  • tan2(x)sec4(x)
  • tan2xsec4x
  • tan²(x)sec⁴(x)
  • tan to the power of 2(x)sec to the power of 4(x)
  • tan^2xsec^4x
  • tan^2(x)sec^4(x)dx

Integral of tan^2(x)sec^4(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |     2       4      
 |  tan (x)*sec (x) dx
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \tan^{2}{\left(x \right)} \sec^{4}{\left(x \right)}\, dx$$
Integral(tan(x)^2*sec(x)^4, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. Integrate term-by-term:

        1. The integral of is when :

        1. The integral of is when :

        The result is:

      Now substitute back in:

    Method #2

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Let .

        Then let and substitute :

        1. The integral of is when :

        Now substitute back in:

      1. Let .

        Then let and substitute :

        1. The integral of is when :

        Now substitute back in:

      The result is:

    Method #3

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Let .

        Then let and substitute :

        1. The integral of is when :

        Now substitute back in:

      1. Let .

        Then let and substitute :

        1. The integral of is when :

        Now substitute back in:

      The result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                          
 |                             3         5   
 |    2       4             tan (x)   tan (x)
 | tan (x)*sec (x) dx = C + ------- + -------
 |                             3         5   
/                                            
$${{3\,\tan ^5x+5\,\tan ^3x}\over{15}}$$
The graph
The answer [src]
   2*sin(1)     sin(1)       sin(1) 
- --------- - ---------- + ---------
  15*cos(1)         3           5   
              15*cos (1)   5*cos (1)
$${{3\,\tan ^51+5\,\tan ^31}\over{15}}$$
=
=
   2*sin(1)     sin(1)       sin(1) 
- --------- - ---------- + ---------
  15*cos(1)         3           5   
              15*cos (1)   5*cos (1)
$$- \frac{\sin{\left(1 \right)}}{15 \cos^{3}{\left(1 \right)}} - \frac{2 \sin{\left(1 \right)}}{15 \cos{\left(1 \right)}} + \frac{\sin{\left(1 \right)}}{5 \cos^{5}{\left(1 \right)}}$$
Numerical answer [src]
3.09166393502534
3.09166393502534
The graph
Integral of tan^2(x)sec^4(x) dx

    Use the examples entering the upper and lower limits of integration.