Integral of (tan^4)x dx
The solution
The answer (Indefinite)
[src]
/
| 2 2 / 2 \ 3
| 4 x tan (x) 2*log\1 + tan (x)/ x*tan (x)
| tan (x)*x dx = C + -- - ------- + ------------------ - x*tan(x) + ---------
| 2 6 3 3
/
$$\int x \tan^{4}{\left(x \right)}\, dx = C + \frac{x^{2}}{2} + \frac{x \tan^{3}{\left(x \right)}}{3} - x \tan{\left(x \right)} + \frac{2 \log{\left(\tan^{2}{\left(x \right)} + 1 \right)}}{3} - \frac{\tan^{2}{\left(x \right)}}{6}$$
2 3 / 2 \
1 tan (1) tan (1) 2*log\1 + tan (1)/
- - tan(1) - ------- + ------- + ------------------
2 6 3 3
$$- \tan{\left(1 \right)} - \frac{\tan^{2}{\left(1 \right)}}{6} + \frac{1}{2} + \frac{2 \log{\left(1 + \tan^{2}{\left(1 \right)} \right)}}{3} + \frac{\tan^{3}{\left(1 \right)}}{3}$$
=
2 3 / 2 \
1 tan (1) tan (1) 2*log\1 + tan (1)/
- - tan(1) - ------- + ------- + ------------------
2 6 3 3
$$- \tan{\left(1 \right)} - \frac{\tan^{2}{\left(1 \right)}}{6} + \frac{1}{2} + \frac{2 \log{\left(1 + \tan^{2}{\left(1 \right)} \right)}}{3} + \frac{\tan^{3}{\left(1 \right)}}{3}$$
1/2 - tan(1) - tan(1)^2/6 + tan(1)^3/3 + 2*log(1 + tan(1)^2)/3
Use the examples entering the upper and lower limits of integration.