Mister Exam

Other calculators


tan^4x/(1-tan^4x)

Integral of tan^4x/(1-tan^4x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |       4        
 |    tan (x)     
 |  ----------- dx
 |         4      
 |  1 - tan (x)   
 |                
/                 
0                 
$$\int\limits_{0}^{1} \frac{\tan^{4}{\left(x \right)}}{1 - \tan^{4}{\left(x \right)}}\, dx$$
Integral(tan(x)^4/(1 - tan(x)^4), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. The integral of a constant times a function is the constant times the integral of the function:

    1. Don't know the steps in finding this integral.

      But the integral is

    So, the result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                                                                                                                            
 |                                                                                                                                                             
 |      4                                                                                       2                         2                               2    
 |   tan (x)            log(1 + tan(x))   log(-1 + tan(x))        4*x           2*tan(x)     tan (x)*log(1 + tan(x))   tan (x)*log(-1 + tan(x))    4*x*tan (x) 
 | ----------- dx = C + --------------- - ---------------- - ------------- + ------------- + ----------------------- - ------------------------ - -------------
 |        4                       2                 2                 2               2                    2                         2                     2   
 | 1 - tan (x)           8 + 8*tan (x)     8 + 8*tan (x)     8 + 8*tan (x)   8 + 8*tan (x)        8 + 8*tan (x)             8 + 8*tan (x)         8 + 8*tan (x)
 |                                                                                                                                                             
/                                                                                                                                                              
$$\int \frac{\tan^{4}{\left(x \right)}}{1 - \tan^{4}{\left(x \right)}}\, dx = C - \frac{4 x \tan^{2}{\left(x \right)}}{8 \tan^{2}{\left(x \right)} + 8} - \frac{4 x}{8 \tan^{2}{\left(x \right)} + 8} - \frac{\log{\left(\tan{\left(x \right)} - 1 \right)} \tan^{2}{\left(x \right)}}{8 \tan^{2}{\left(x \right)} + 8} - \frac{\log{\left(\tan{\left(x \right)} - 1 \right)}}{8 \tan^{2}{\left(x \right)} + 8} + \frac{\log{\left(\tan{\left(x \right)} + 1 \right)} \tan^{2}{\left(x \right)}}{8 \tan^{2}{\left(x \right)} + 8} + \frac{\log{\left(\tan{\left(x \right)} + 1 \right)}}{8 \tan^{2}{\left(x \right)} + 8} + \frac{2 \tan{\left(x \right)}}{8 \tan^{2}{\left(x \right)} + 8}$$
The graph
The answer [src]
nan
$$\text{NaN}$$
=
=
nan
$$\text{NaN}$$
nan
Numerical answer [src]
-0.545789771331317
-0.545789771331317
The graph
Integral of tan^4x/(1-tan^4x) dx

    Use the examples entering the upper and lower limits of integration.