Mister Exam

Integral of tan^5xdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |     5        
 |  tan (x)*1 dx
 |              
/               
0               
01tan5(x)1dx\int\limits_{0}^{1} \tan^{5}{\left(x \right)} 1\, dx
Integral(tan(x)^5*1, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    tan5(x)1=(sec2(x)1)2tan(x)\tan^{5}{\left(x \right)} 1 = \left(\sec^{2}{\left(x \right)} - 1\right)^{2} \tan{\left(x \right)}

  2. There are multiple ways to do this integral.

    Method #1

    1. Let u=sec2(x)u = \sec^{2}{\left(x \right)}.

      Then let du=2tan(x)sec2(x)dxdu = 2 \tan{\left(x \right)} \sec^{2}{\left(x \right)} dx and substitute du2\frac{du}{2}:

      u22u+14udu\int \frac{u^{2} - 2 u + 1}{4 u}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        u22u+12udu=u22u+1udu2\int \frac{u^{2} - 2 u + 1}{2 u}\, du = \frac{\int \frac{u^{2} - 2 u + 1}{u}\, du}{2}

        1. Rewrite the integrand:

          u22u+1u=u2+1u\frac{u^{2} - 2 u + 1}{u} = u - 2 + \frac{1}{u}

        2. Integrate term-by-term:

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            udu=u22\int u\, du = \frac{u^{2}}{2}

          1. The integral of a constant is the constant times the variable of integration:

            (2)du=2u\int \left(-2\right)\, du = - 2 u

          1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

          The result is: u222u+log(u)\frac{u^{2}}{2} - 2 u + \log{\left(u \right)}

        So, the result is: u24u+log(u)2\frac{u^{2}}{4} - u + \frac{\log{\left(u \right)}}{2}

      Now substitute uu back in:

      log(sec2(x))2+sec4(x)4sec2(x)\frac{\log{\left(\sec^{2}{\left(x \right)} \right)}}{2} + \frac{\sec^{4}{\left(x \right)}}{4} - \sec^{2}{\left(x \right)}

    Method #2

    1. Rewrite the integrand:

      (sec2(x)1)2tan(x)=tan(x)sec4(x)2tan(x)sec2(x)+tan(x)\left(\sec^{2}{\left(x \right)} - 1\right)^{2} \tan{\left(x \right)} = \tan{\left(x \right)} \sec^{4}{\left(x \right)} - 2 \tan{\left(x \right)} \sec^{2}{\left(x \right)} + \tan{\left(x \right)}

    2. Integrate term-by-term:

      1. Let u=sec4(x)u = \sec^{4}{\left(x \right)}.

        Then let du=4tan(x)sec4(x)dxdu = 4 \tan{\left(x \right)} \sec^{4}{\left(x \right)} dx and substitute du4\frac{du}{4}:

        116du\int \frac{1}{16}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          14du=1du4\int \frac{1}{4}\, du = \frac{\int 1\, du}{4}

          1. The integral of a constant is the constant times the variable of integration:

            1du=u\int 1\, du = u

          So, the result is: u4\frac{u}{4}

        Now substitute uu back in:

        sec4(x)4\frac{\sec^{4}{\left(x \right)}}{4}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (2tan(x)sec2(x))dx=2tan(x)sec2(x)dx\int \left(- 2 \tan{\left(x \right)} \sec^{2}{\left(x \right)}\right)\, dx = - 2 \int \tan{\left(x \right)} \sec^{2}{\left(x \right)}\, dx

        1. Let u=sec2(x)u = \sec^{2}{\left(x \right)}.

          Then let du=2tan(x)sec2(x)dxdu = 2 \tan{\left(x \right)} \sec^{2}{\left(x \right)} dx and substitute du2\frac{du}{2}:

          14du\int \frac{1}{4}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            12du=1du2\int \frac{1}{2}\, du = \frac{\int 1\, du}{2}

            1. The integral of a constant is the constant times the variable of integration:

              1du=u\int 1\, du = u

            So, the result is: u2\frac{u}{2}

          Now substitute uu back in:

          sec2(x)2\frac{\sec^{2}{\left(x \right)}}{2}

        So, the result is: sec2(x)- \sec^{2}{\left(x \right)}

      1. Rewrite the integrand:

        tan(x)=sin(x)cos(x)\tan{\left(x \right)} = \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}

      2. Let u=cos(x)u = \cos{\left(x \right)}.

        Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

        1udu\int \frac{1}{u}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          (1u)du=1udu\int \left(- \frac{1}{u}\right)\, du = - \int \frac{1}{u}\, du

          1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

          So, the result is: log(u)- \log{\left(u \right)}

        Now substitute uu back in:

        log(cos(x))- \log{\left(\cos{\left(x \right)} \right)}

      The result is: log(cos(x))+sec4(x)4sec2(x)- \log{\left(\cos{\left(x \right)} \right)} + \frac{\sec^{4}{\left(x \right)}}{4} - \sec^{2}{\left(x \right)}

    Method #3

    1. Rewrite the integrand:

      (sec2(x)1)2tan(x)=tan(x)sec4(x)2tan(x)sec2(x)+tan(x)\left(\sec^{2}{\left(x \right)} - 1\right)^{2} \tan{\left(x \right)} = \tan{\left(x \right)} \sec^{4}{\left(x \right)} - 2 \tan{\left(x \right)} \sec^{2}{\left(x \right)} + \tan{\left(x \right)}

    2. Integrate term-by-term:

      1. Let u=sec4(x)u = \sec^{4}{\left(x \right)}.

        Then let du=4tan(x)sec4(x)dxdu = 4 \tan{\left(x \right)} \sec^{4}{\left(x \right)} dx and substitute du4\frac{du}{4}:

        116du\int \frac{1}{16}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          14du=1du4\int \frac{1}{4}\, du = \frac{\int 1\, du}{4}

          1. The integral of a constant is the constant times the variable of integration:

            1du=u\int 1\, du = u

          So, the result is: u4\frac{u}{4}

        Now substitute uu back in:

        sec4(x)4\frac{\sec^{4}{\left(x \right)}}{4}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (2tan(x)sec2(x))dx=2tan(x)sec2(x)dx\int \left(- 2 \tan{\left(x \right)} \sec^{2}{\left(x \right)}\right)\, dx = - 2 \int \tan{\left(x \right)} \sec^{2}{\left(x \right)}\, dx

        1. Let u=sec2(x)u = \sec^{2}{\left(x \right)}.

          Then let du=2tan(x)sec2(x)dxdu = 2 \tan{\left(x \right)} \sec^{2}{\left(x \right)} dx and substitute du2\frac{du}{2}:

          14du\int \frac{1}{4}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            12du=1du2\int \frac{1}{2}\, du = \frac{\int 1\, du}{2}

            1. The integral of a constant is the constant times the variable of integration:

              1du=u\int 1\, du = u

            So, the result is: u2\frac{u}{2}

          Now substitute uu back in:

          sec2(x)2\frac{\sec^{2}{\left(x \right)}}{2}

        So, the result is: sec2(x)- \sec^{2}{\left(x \right)}

      1. Rewrite the integrand:

        tan(x)=sin(x)cos(x)\tan{\left(x \right)} = \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}

      2. Let u=cos(x)u = \cos{\left(x \right)}.

        Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

        1udu\int \frac{1}{u}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          (1u)du=1udu\int \left(- \frac{1}{u}\right)\, du = - \int \frac{1}{u}\, du

          1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

          So, the result is: log(u)- \log{\left(u \right)}

        Now substitute uu back in:

        log(cos(x))- \log{\left(\cos{\left(x \right)} \right)}

      The result is: log(cos(x))+sec4(x)4sec2(x)- \log{\left(\cos{\left(x \right)} \right)} + \frac{\sec^{4}{\left(x \right)}}{4} - \sec^{2}{\left(x \right)}

  3. Add the constant of integration:

    log(sec2(x))2+sec4(x)4sec2(x)+constant\frac{\log{\left(\sec^{2}{\left(x \right)} \right)}}{2} + \frac{\sec^{4}{\left(x \right)}}{4} - \sec^{2}{\left(x \right)}+ \mathrm{constant}


The answer is:

log(sec2(x))2+sec4(x)4sec2(x)+constant\frac{\log{\left(\sec^{2}{\left(x \right)} \right)}}{2} + \frac{\sec^{4}{\left(x \right)}}{4} - \sec^{2}{\left(x \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                   
 |                       /   2   \                4   
 |    5               log\sec (x)/      2      sec (x)
 | tan (x)*1 dx = C + ------------ - sec (x) + -------
 |                         2                      4   
/                                                     
4sin2x34sin4x8sin2x+4log(sin2x1)2{{4\,\sin ^2x-3}\over{4\,\sin ^4x-8\,\sin ^2x+4}}-{{\log \left( \sin ^2x-1\right)}\over{2}}
The graph
0.001.000.100.200.300.400.500.600.700.800.90-1010
The answer [src]
                            2   
3                 -1 + 4*cos (1)
- - log(cos(1)) - --------------
4                        4      
                    4*cos (1)   
log(1sin21)234sin418sin21+4+sin21sin412sin21+1+34-{{\log \left(1-\sin ^21\right)}\over{2}}-{{3}\over{4\,\sin ^41-8\, \sin ^21+4}}+{{\sin ^21}\over{\sin ^41-2\,\sin ^21+1}}+{{3}\over{4}}
=
=
                            2   
3                 -1 + 4*cos (1)
- - log(cos(1)) - --------------
4                        4      
                    4*cos (1)   
1+4cos2(1)4cos4(1)log(cos(1))+34- \frac{-1 + 4 \cos^{2}{\left(1 \right)}}{4 \cos^{4}{\left(1 \right)}} - \log{\left(\cos{\left(1 \right)} \right)} + \frac{3}{4}
Numerical answer [src]
0.87365244751029
0.87365244751029
The graph
Integral of tan^5xdx dx

    Use the examples entering the upper and lower limits of integration.