Integral of tan^5xdx dx
The solution
Detail solution
-
Rewrite the integrand:
tan5(x)1=(sec2(x)−1)2tan(x)
-
There are multiple ways to do this integral.
Method #1
-
Let u=sec2(x).
Then let du=2tan(x)sec2(x)dx and substitute 2du:
∫4uu2−2u+1du
-
The integral of a constant times a function is the constant times the integral of the function:
∫2uu2−2u+1du=2∫uu2−2u+1du
-
Rewrite the integrand:
uu2−2u+1=u−2+u1
-
Integrate term-by-term:
-
The integral of un is n+1un+1 when n=−1:
∫udu=2u2
-
The integral of a constant is the constant times the variable of integration:
∫(−2)du=−2u
-
The integral of u1 is log(u).
The result is: 2u2−2u+log(u)
So, the result is: 4u2−u+2log(u)
Now substitute u back in:
2log(sec2(x))+4sec4(x)−sec2(x)
Method #2
-
Rewrite the integrand:
(sec2(x)−1)2tan(x)=tan(x)sec4(x)−2tan(x)sec2(x)+tan(x)
-
Integrate term-by-term:
-
Let u=sec4(x).
Then let du=4tan(x)sec4(x)dx and substitute 4du:
∫161du
-
The integral of a constant times a function is the constant times the integral of the function:
∫41du=4∫1du
-
The integral of a constant is the constant times the variable of integration:
∫1du=u
So, the result is: 4u
Now substitute u back in:
4sec4(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2tan(x)sec2(x))dx=−2∫tan(x)sec2(x)dx
-
Let u=sec2(x).
Then let du=2tan(x)sec2(x)dx and substitute 2du:
∫41du
-
The integral of a constant times a function is the constant times the integral of the function:
∫21du=2∫1du
-
The integral of a constant is the constant times the variable of integration:
∫1du=u
So, the result is: 2u
Now substitute u back in:
2sec2(x)
So, the result is: −sec2(x)
-
Rewrite the integrand:
tan(x)=cos(x)sin(x)
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫u1du
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u1)du=−∫u1du
-
The integral of u1 is log(u).
So, the result is: −log(u)
Now substitute u back in:
−log(cos(x))
The result is: −log(cos(x))+4sec4(x)−sec2(x)
Method #3
-
Rewrite the integrand:
(sec2(x)−1)2tan(x)=tan(x)sec4(x)−2tan(x)sec2(x)+tan(x)
-
Integrate term-by-term:
-
Let u=sec4(x).
Then let du=4tan(x)sec4(x)dx and substitute 4du:
∫161du
-
The integral of a constant times a function is the constant times the integral of the function:
∫41du=4∫1du
-
The integral of a constant is the constant times the variable of integration:
∫1du=u
So, the result is: 4u
Now substitute u back in:
4sec4(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2tan(x)sec2(x))dx=−2∫tan(x)sec2(x)dx
-
Let u=sec2(x).
Then let du=2tan(x)sec2(x)dx and substitute 2du:
∫41du
-
The integral of a constant times a function is the constant times the integral of the function:
∫21du=2∫1du
-
The integral of a constant is the constant times the variable of integration:
∫1du=u
So, the result is: 2u
Now substitute u back in:
2sec2(x)
So, the result is: −sec2(x)
-
Rewrite the integrand:
tan(x)=cos(x)sin(x)
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫u1du
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u1)du=−∫u1du
-
The integral of u1 is log(u).
So, the result is: −log(u)
Now substitute u back in:
−log(cos(x))
The result is: −log(cos(x))+4sec4(x)−sec2(x)
-
Add the constant of integration:
2log(sec2(x))+4sec4(x)−sec2(x)+constant
The answer is:
2log(sec2(x))+4sec4(x)−sec2(x)+constant
The answer (Indefinite)
[src]
/
| / 2 \ 4
| 5 log\sec (x)/ 2 sec (x)
| tan (x)*1 dx = C + ------------ - sec (x) + -------
| 2 4
/
4sin4x−8sin2x+44sin2x−3−2log(sin2x−1)
The graph
2
3 -1 + 4*cos (1)
- - log(cos(1)) - --------------
4 4
4*cos (1)
−2log(1−sin21)−4sin41−8sin21+43+sin41−2sin21+1sin21+43
=
2
3 -1 + 4*cos (1)
- - log(cos(1)) - --------------
4 4
4*cos (1)
−4cos4(1)−1+4cos2(1)−log(cos(1))+43
Use the examples entering the upper and lower limits of integration.