Mister Exam

Integral of tan³xsecx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |     3             
 |  tan (x)*sec(x) dx
 |                   
/                    
0                    
$$\int\limits_{0}^{1} \tan^{3}{\left(x \right)} \sec{\left(x \right)}\, dx$$
Integral(tan(x)^3*sec(x), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. Integrate term-by-term:

        1. The integral of is when :

        1. The integral of a constant is the constant times the variable of integration:

        The result is:

      Now substitute back in:

    Method #2

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Let .

        Then let and substitute :

        1. The integral of is when :

        Now substitute back in:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of secant times tangent is secant:

        So, the result is:

      The result is:

    Method #3

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Let .

        Then let and substitute :

        1. The integral of is when :

        Now substitute back in:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of secant times tangent is secant:

        So, the result is:

      The result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                        
 |                                     3   
 |    3                             sec (x)
 | tan (x)*sec(x) dx = C - sec(x) + -------
 |                                     3   
/                                          
$$\int \tan^{3}{\left(x \right)} \sec{\left(x \right)}\, dx = C + \frac{\sec^{3}{\left(x \right)}}{3} - \sec{\left(x \right)}$$
The graph
The answer [src]
              2   
2   -1 + 3*cos (1)
- - --------------
3          3      
      3*cos (1)   
$$- \frac{-1 + 3 \cos^{2}{\left(1 \right)}}{3 \cos^{3}{\left(1 \right)}} + \frac{2}{3}$$
=
=
              2   
2   -1 + 3*cos (1)
- - --------------
3          3      
      3*cos (1)   
$$- \frac{-1 + 3 \cos^{2}{\left(1 \right)}}{3 \cos^{3}{\left(1 \right)}} + \frac{2}{3}$$
2/3 - (-1 + 3*cos(1)^2)/(3*cos(1)^3)
Numerical answer [src]
0.92918564057767
0.92918564057767
The graph
Integral of tan³xsecx dx

    Use the examples entering the upper and lower limits of integration.