Mister Exam

Other calculators


sqrt(12-3x^2)

Integral of sqrt(12-3x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |     ___________   
 |    /         2    
 |  \/  12 - 3*x   dx
 |                   
/                    
0                    
$$\int\limits_{0}^{1} \sqrt{- 3 x^{2} + 12}\, dx$$
Integral(sqrt(12 - 3*x^2), (x, 0, 1))
Detail solution

    SqrtQuadraticRule(a=12, b=0, c=-3, context=sqrt(12 - 3*x**2), symbol=x)

  1. Now simplify:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                          
 |                              ___________                  
 |    ___________              /         2                   
 |   /         2           x*\/  12 - 3*x         ___     /x\
 | \/  12 - 3*x   dx = C + ---------------- + 2*\/ 3 *asin|-|
 |                                2                       \2/
/                                                            
$${{x\,\sqrt{12-3\,x^2}}\over{2}}+2\,\sqrt{3}\,\arcsin \left({{x }\over{2}}\right)$$
The graph
The answer [src]
         ___
3   pi*\/ 3 
- + --------
2      3    
$${{2\,\sqrt{3}\,\pi+9}\over{6}}$$
=
=
         ___
3   pi*\/ 3 
- + --------
2      3    
$$\frac{3}{2} + \frac{\sqrt{3} \pi}{3}$$
Numerical answer [src]
3.31379936423422
3.31379936423422
The graph
Integral of sqrt(12-3x^2) dx

    Use the examples entering the upper and lower limits of integration.