Mister Exam

Other calculators


t^2-1

Integral of t^2-1 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |  / 2    \   
 |  \t  - 1/ dt
 |             
/              
0              
$$\int\limits_{0}^{1} \left(t^{2} - 1\right)\, dt$$
Integral(t^2 - 1, (t, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of is when :

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                        
 |                        3
 | / 2    \              t 
 | \t  - 1/ dt = C - t + --
 |                       3 
/                          
$$\int \left(t^{2} - 1\right)\, dt = C + \frac{t^{3}}{3} - t$$
The graph
The answer [src]
-2/3
$$- \frac{2}{3}$$
=
=
-2/3
$$- \frac{2}{3}$$
-2/3
Numerical answer [src]
-0.666666666666667
-0.666666666666667
The graph
Integral of t^2-1 dx

    Use the examples entering the upper and lower limits of integration.