Mister Exam

Other calculators

Integral of sqrt(xy-y^2) dy

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |     __________   
 |    /        2    
 |  \/  x*y - y   dy
 |                  
/                   
0                   
$$\int\limits_{0}^{1} \sqrt{x y - y^{2}}\, dy$$
The answer [src]
                        2    /               ________\      2       
  ________ /1   x\   I*x *log\-2 + x + 2*I*\/ -1 + x /   I*x *log(x)
\/ -1 + x *|- - -| - --------------------------------- + -----------
           \2   4/                   8                        8     
$$\frac{i x^{2} \log{\left(x \right)}}{8} - \frac{i x^{2} \log{\left(x + 2 i \sqrt{x - 1} - 2 \right)}}{8} + \left(- \frac{x}{4} + \frac{1}{2}\right) \sqrt{x - 1}$$
=
=
                        2    /               ________\      2       
  ________ /1   x\   I*x *log\-2 + x + 2*I*\/ -1 + x /   I*x *log(x)
\/ -1 + x *|- - -| - --------------------------------- + -----------
           \2   4/                   8                        8     
$$\frac{i x^{2} \log{\left(x \right)}}{8} - \frac{i x^{2} \log{\left(x + 2 i \sqrt{x - 1} - 2 \right)}}{8} + \left(- \frac{x}{4} + \frac{1}{2}\right) \sqrt{x - 1}$$

    Use the examples entering the upper and lower limits of integration.