Mister Exam

Other calculators

Integral of sqrt(x^2-2x-1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |     ______________   
 |    /  2              
 |  \/  x  - 2*x - 1  dx
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \sqrt{\left(x^{2} - 2 x\right) - 1}\, dx$$
Integral(sqrt(x^2 - 2*x - 1), (x, 0, 1))
The answer [src]
  1                      
  /                      
 |                       
 |     _______________   
 |    /       2          
 |  \/  -1 + x  - 2*x  dx
 |                       
/                        
0                        
$$\int\limits_{0}^{1} \sqrt{x^{2} - 2 x - 1}\, dx$$
=
=
  1                      
  /                      
 |                       
 |     _______________   
 |    /       2          
 |  \/  -1 + x  - 2*x  dx
 |                       
/                        
0                        
$$\int\limits_{0}^{1} \sqrt{x^{2} - 2 x - 1}\, dx$$
Integral(sqrt(-1 + x^2 - 2*x), (x, 0, 1))
Numerical answer [src]
(0.0 + 1.28539816339745j)
(0.0 + 1.28539816339745j)

    Use the examples entering the upper and lower limits of integration.