Mister Exam

Other calculators

Integral of sqrt(x+3)/((2*x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  6             
  /             
 |              
 |    _______   
 |  \/ x + 3    
 |  --------- dx
 |     2*x      
 |              
/               
1               
$$\int\limits_{1}^{6} \frac{\sqrt{x + 3}}{2 x}\, dx$$
Integral(sqrt(x + 3)/((2*x)), (x, 1, 6))
The answer (Indefinite) [src]
                                    //            /  ___   _______\                \
                                    ||   ___      |\/ 3 *\/ x + 3 |                |
  /                                 ||-\/ 3 *acoth|---------------|                |
 |                                  ||            \       3       /                |
 |   _______                        ||------------------------------  for x + 3 > 3|
 | \/ x + 3             _______     ||              3                              |
 | --------- dx = C + \/ x + 3  + 3*|<                                             |
 |    2*x                           ||            /  ___   _______\                |
 |                                  ||   ___      |\/ 3 *\/ x + 3 |                |
/                                   ||-\/ 3 *atanh|---------------|                |
                                    ||            \       3       /                |
                                    ||------------------------------  for x + 3 < 3|
                                    \\              3                              /
$$\int \frac{\sqrt{x + 3}}{2 x}\, dx = C + \sqrt{x + 3} + 3 \left(\begin{cases} - \frac{\sqrt{3} \operatorname{acoth}{\left(\frac{\sqrt{3} \sqrt{x + 3}}{3} \right)}}{3} & \text{for}\: x + 3 > 3 \\- \frac{\sqrt{3} \operatorname{atanh}{\left(\frac{\sqrt{3} \sqrt{x + 3}}{3} \right)}}{3} & \text{for}\: x + 3 < 3 \end{cases}\right)$$
The graph
The answer [src]
               /    ___\                     
      ___      |2*\/ 3 |     ___      /  ___\
1 + \/ 3 *acoth|-------| - \/ 3 *acoth\\/ 3 /
               \   3   /                     
$$- \sqrt{3} \operatorname{acoth}{\left(\sqrt{3} \right)} + 1 + \sqrt{3} \operatorname{acoth}{\left(\frac{2 \sqrt{3}}{3} \right)}$$
=
=
               /    ___\                     
      ___      |2*\/ 3 |     ___      /  ___\
1 + \/ 3 *acoth|-------| - \/ 3 *acoth\\/ 3 /
               \   3   /                     
$$- \sqrt{3} \operatorname{acoth}{\left(\sqrt{3} \right)} + 1 + \sqrt{3} \operatorname{acoth}{\left(\frac{2 \sqrt{3}}{3} \right)}$$
1 + sqrt(3)*acoth(2*sqrt(3)/3) - sqrt(3)*acoth(sqrt(3))
Numerical answer [src]
2.14051899445142
2.14051899445142

    Use the examples entering the upper and lower limits of integration.