Mister Exam

Other calculators


sqrt(x)+sqrt(x^3)

Integral of sqrt(x)+sqrt(x^3) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |  /           ____\   
 |  |  ___     /  3 |   
 |  \\/ x  + \/  x  / dx
 |                      
/                       
0                       
01(x+x3)dx\int\limits_{0}^{1} \left(\sqrt{x} + \sqrt{x^{3}}\right)\, dx
Integral(sqrt(x) + sqrt(x^3), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      xdx=2x323\int \sqrt{x}\, dx = \frac{2 x^{\frac{3}{2}}}{3}

    1. Don't know the steps in finding this integral.

      But the integral is

      2xx35\frac{2 x \sqrt{x^{3}}}{5}

    The result is: 2x323+2xx35\frac{2 x^{\frac{3}{2}}}{3} + \frac{2 x \sqrt{x^{3}}}{5}

  2. Add the constant of integration:

    2x323+2xx35+constant\frac{2 x^{\frac{3}{2}}}{3} + \frac{2 x \sqrt{x^{3}}}{5}+ \mathrm{constant}


The answer is:

2x323+2xx35+constant\frac{2 x^{\frac{3}{2}}}{3} + \frac{2 x \sqrt{x^{3}}}{5}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                               
 |                                            ____
 | /           ____\             3/2         /  3 
 | |  ___     /  3 |          2*x      2*x*\/  x  
 | \\/ x  + \/  x  / dx = C + ------ + -----------
 |                              3           5     
/                                                 
(x+x3)dx=C+2x323+2xx35\int \left(\sqrt{x} + \sqrt{x^{3}}\right)\, dx = C + \frac{2 x^{\frac{3}{2}}}{3} + \frac{2 x \sqrt{x^{3}}}{5}
The graph
0.001.000.100.200.300.400.500.600.700.800.9004
The answer [src]
16
--
15
1615\frac{16}{15}
=
=
16
--
15
1615\frac{16}{15}
16/15
Numerical answer [src]
1.06666666666667
1.06666666666667
The graph
Integral of sqrt(x)+sqrt(x^3) dx

    Use the examples entering the upper and lower limits of integration.