Mister Exam

Other calculators


sqrtx+sqrtx+1

Integral of sqrtx+sqrtx+1 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                       
  /                       
 |                        
 |  /  ___     ___    \   
 |  \\/ x  + \/ x  + 1/ dx
 |                        
/                         
0                         
01((x+x)+1)dx\int\limits_{0}^{1} \left(\left(\sqrt{x} + \sqrt{x}\right) + 1\right)\, dx
Integral(sqrt(x) + sqrt(x) + 1, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. Integrate term-by-term:

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=2x323\int \sqrt{x}\, dx = \frac{2 x^{\frac{3}{2}}}{3}

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=2x323\int \sqrt{x}\, dx = \frac{2 x^{\frac{3}{2}}}{3}

      The result is: 4x323\frac{4 x^{\frac{3}{2}}}{3}

    1. The integral of a constant is the constant times the variable of integration:

      1dx=x\int 1\, dx = x

    The result is: 4x323+x\frac{4 x^{\frac{3}{2}}}{3} + x

  2. Add the constant of integration:

    4x323+x+constant\frac{4 x^{\frac{3}{2}}}{3} + x+ \mathrm{constant}


The answer is:

4x323+x+constant\frac{4 x^{\frac{3}{2}}}{3} + x+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                       
 |                                     3/2
 | /  ___     ___    \              4*x   
 | \\/ x  + \/ x  + 1/ dx = C + x + ------
 |                                    3   
/                                         
((x+x)+1)dx=C+4x323+x\int \left(\left(\sqrt{x} + \sqrt{x}\right) + 1\right)\, dx = C + \frac{4 x^{\frac{3}{2}}}{3} + x
The graph
0.001.000.100.200.300.400.500.600.700.800.9005
The answer [src]
7/3
73\frac{7}{3}
=
=
7/3
73\frac{7}{3}
7/3
Numerical answer [src]
2.33333333333333
2.33333333333333
The graph
Integral of sqrtx+sqrtx+1 dx

    Use the examples entering the upper and lower limits of integration.