Mister Exam

Other calculators

Integral of (sqrt(x)+1/sqrt(x))dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |  /  ___     1  \   
 |  |\/ x  + -----| dx
 |  |          ___|   
 |  \        \/ x /   
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)\, dx$$
Integral(sqrt(x) + 1/(sqrt(x)), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of is when :

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of a constant is the constant times the variable of integration:

        So, the result is:

      Now substitute back in:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                         
 |                                       3/2
 | /  ___     1  \              ___   2*x   
 | |\/ x  + -----| dx = C + 2*\/ x  + ------
 | |          ___|                      3   
 | \        \/ x /                          
 |                                          
/                                           
$$\int \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)\, dx = C + \frac{2 x^{\frac{3}{2}}}{3} + 2 \sqrt{x}$$
The graph
The answer [src]
8/3
$$\frac{8}{3}$$
=
=
8/3
$$\frac{8}{3}$$
8/3
Numerical answer [src]
2.66666666613608
2.66666666613608

    Use the examples entering the upper and lower limits of integration.