Mister Exam

Other calculators

Integral of (sqrt(x)+1/sqrt(x))dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |  /  ___     1  \   
 |  |\/ x  + -----| dx
 |  |          ___|   
 |  \        \/ x /   
 |                    
/                     
0                     
01(x+1x)dx\int\limits_{0}^{1} \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)\, dx
Integral(sqrt(x) + 1/(sqrt(x)), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      xdx=2x323\int \sqrt{x}\, dx = \frac{2 x^{\frac{3}{2}}}{3}

    1. Let u=xu = \sqrt{x}.

      Then let du=dx2xdu = \frac{dx}{2 \sqrt{x}} and substitute 2du2 du:

      2du\int 2\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        False\text{False}

        1. The integral of a constant is the constant times the variable of integration:

          1du=u\int 1\, du = u

        So, the result is: 2u2 u

      Now substitute uu back in:

      2x2 \sqrt{x}

    The result is: 2x323+2x\frac{2 x^{\frac{3}{2}}}{3} + 2 \sqrt{x}

  2. Now simplify:

    2x(x+3)3\frac{2 \sqrt{x} \left(x + 3\right)}{3}

  3. Add the constant of integration:

    2x(x+3)3+constant\frac{2 \sqrt{x} \left(x + 3\right)}{3}+ \mathrm{constant}


The answer is:

2x(x+3)3+constant\frac{2 \sqrt{x} \left(x + 3\right)}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                         
 |                                       3/2
 | /  ___     1  \              ___   2*x   
 | |\/ x  + -----| dx = C + 2*\/ x  + ------
 | |          ___|                      3   
 | \        \/ x /                          
 |                                          
/                                           
(x+1x)dx=C+2x323+2x\int \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)\, dx = C + \frac{2 x^{\frac{3}{2}}}{3} + 2 \sqrt{x}
The graph
0.001.000.100.200.300.400.500.600.700.800.900100
The answer [src]
8/3
83\frac{8}{3}
=
=
8/3
83\frac{8}{3}
8/3
Numerical answer [src]
2.66666666613608
2.66666666613608

    Use the examples entering the upper and lower limits of integration.