Mister Exam

Other calculators

Integral of sqrt(x)*ln^2(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  E                 
  /                 
 |                  
 |    ___    2      
 |  \/ x *log (x) dx
 |                  
/                   
0                   
$$\int\limits_{0}^{e} \sqrt{x} \log{\left(x \right)}^{2}\, dx$$
Integral(sqrt(x)*log(x)^2, (x, 0, E))
The answer (Indefinite) [src]
  /                                                               
 |                            3/2      3/2             3/2    2   
 |   ___    2             16*x      8*x   *log(x)   2*x   *log (x)
 | \/ x *log (x) dx = C + ------- - ------------- + --------------
 |                           27           9               3       
/                                                                 
$$\int \sqrt{x} \log{\left(x \right)}^{2}\, dx = C + \frac{2 x^{\frac{3}{2}} \log{\left(x \right)}^{2}}{3} - \frac{8 x^{\frac{3}{2}} \log{\left(x \right)}}{9} + \frac{16 x^{\frac{3}{2}}}{27}$$
The answer [src]
    3/2
10*e   
-------
   27  
$$\frac{10 e^{\frac{3}{2}}}{27}$$
=
=
    3/2
10*e   
-------
   27  
$$\frac{10 e^{\frac{3}{2}}}{27}$$
10*exp(3/2)/27
Numerical answer [src]
1.65988484086595
1.65988484086595

    Use the examples entering the upper and lower limits of integration.