Mister Exam

Other calculators

Integral of sqrt(x)*exp(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 1/7           
  /            
 |             
 |    ___  x   
 |  \/ x *e  dx
 |             
/              
0              
$$\int\limits_{0}^{\frac{1}{7}} \sqrt{x} e^{x}\, dx$$
Integral(sqrt(x)*exp(x), (x, 0, 1/7))
Detail solution

    UpperGammaRule(a=1, e=1/2, context=sqrt(x)*exp(x), symbol=x)

  1. Now simplify:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
                           /              ____     /  ____\\
  /                    ___ |  ____  x   \/ pi *erfc\\/ -x /|
 |                   \/ x *|\/ -x *e  + -------------------|
 |   ___  x                \                     2         /
 | \/ x *e  dx = C + ---------------------------------------
 |                                      ____                
/                                     \/ -x                 
$$\int \sqrt{x} e^{x}\, dx = C + \frac{\sqrt{x} \left(\sqrt{- x} e^{x} + \frac{\sqrt{\pi} \operatorname{erfc}{\left(\sqrt{- x} \right)}}{2}\right)}{\sqrt{- x}}$$
The graph
The answer [src]
                         /    ___\
                 ____    |I*\/ 7 |
  ___  1/7   I*\/ pi *erf|-------|
\/ 7 *e                  \   7   /
---------- + ---------------------
    7                  2          
$$\frac{i \sqrt{\pi} \operatorname{erf}{\left(\frac{\sqrt{7} i}{7} \right)}}{2} + \frac{\sqrt{7} e^{\frac{1}{7}}}{7}$$
=
=
                         /    ___\
                 ____    |I*\/ 7 |
  ___  1/7   I*\/ pi *erf|-------|
\/ 7 *e                  \   7   /
---------- + ---------------------
    7                  2          
$$\frac{i \sqrt{\pi} \operatorname{erf}{\left(\frac{\sqrt{7} i}{7} \right)}}{2} + \frac{\sqrt{7} e^{\frac{1}{7}}}{7}$$
sqrt(7)*exp(1/7)/7 + i*sqrt(pi)*erf(i*sqrt(7)/7)/2
Numerical answer [src]
0.0392454652807396
0.0392454652807396

    Use the examples entering the upper and lower limits of integration.