Integral of sqrt(x)*exp(x) dx
The solution
Detail solution
UpperGammaRule(a=1, e=1/2, context=sqrt(x)*exp(x), symbol=x)
-
Now simplify:
xex+2−xπxerfc(−x)
-
Add the constant of integration:
xex+2−xπxerfc(−x)+constant
The answer is:
xex+2−xπxerfc(−x)+constant
The answer (Indefinite)
[src]
/ ____ / ____\\
/ ___ | ____ x \/ pi *erfc\\/ -x /|
| \/ x *|\/ -x *e + -------------------|
| ___ x \ 2 /
| \/ x *e dx = C + ---------------------------------------
| ____
/ \/ -x
∫xexdx=C+−xx(−xex+2πerfc(−x))
The graph
/ ___\
____ |I*\/ 7 |
___ 1/7 I*\/ pi *erf|-------|
\/ 7 *e \ 7 /
---------- + ---------------------
7 2
2iπerf(77i)+77e71
=
/ ___\
____ |I*\/ 7 |
___ 1/7 I*\/ pi *erf|-------|
\/ 7 *e \ 7 /
---------- + ---------------------
7 2
2iπerf(77i)+77e71
sqrt(7)*exp(1/7)/7 + i*sqrt(pi)*erf(i*sqrt(7)/7)/2
Use the examples entering the upper and lower limits of integration.