Mister Exam

Derivative of sqrt(x)*exp(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  ___  x
\/ x *e 
$$\sqrt{x} e^{x}$$
sqrt(x)*exp(x)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. The derivative of is itself.

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
               x  
  ___  x      e   
\/ x *e  + -------
               ___
           2*\/ x 
$$\sqrt{x} e^{x} + \frac{e^{x}}{2 \sqrt{x}}$$
The second derivative [src]
/  ___     1       1   \  x
|\/ x  + ----- - ------|*e 
|          ___      3/2|   
\        \/ x    4*x   /   
$$\left(\sqrt{x} + \frac{1}{\sqrt{x}} - \frac{1}{4 x^{\frac{3}{2}}}\right) e^{x}$$
The third derivative [src]
/  ___     3         3        3   \  x
|\/ x  - ------ + ------- + ------|*e 
|           3/2       ___      5/2|   
\        4*x      2*\/ x    8*x   /   
$$\left(\sqrt{x} + \frac{3}{2 \sqrt{x}} - \frac{3}{4 x^{\frac{3}{2}}} + \frac{3}{8 x^{\frac{5}{2}}}\right) e^{x}$$