Mister Exam

Other calculators

Integral of (sqrt(x))((ln(x))/(ln(2))) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  4                
  /                
 |                 
 |    ___ log(x)   
 |  \/ x *------ dx
 |        log(2)   
 |                 
/                  
1                  
$$\int\limits_{1}^{4} \sqrt{x} \frac{\log{\left(x \right)}}{\log{\left(2 \right)}}\, dx$$
Integral(sqrt(x)*(log(x)/log(2)), (x, 1, 4))
The answer (Indefinite) [src]
                           /     3/2    3/2       \
  /                        |  2*x      x   *log(x)|
 |                       2*|- ------ + -----------|
 |   ___ log(x)            \    9           3     /
 | \/ x *------ dx = C + --------------------------
 |       log(2)                    log(2)          
 |                                                 
/                                                  
$$\int \sqrt{x} \frac{\log{\left(x \right)}}{\log{\left(2 \right)}}\, dx = C + \frac{2 \left(\frac{x^{\frac{3}{2}} \log{\left(x \right)}}{3} - \frac{2 x^{\frac{3}{2}}}{9}\right)}{\log{\left(2 \right)}}$$
The answer [src]
             32   16*log(4)
           - -- + ---------
   4         9        3    
-------- + ----------------
9*log(2)        log(2)     
$$\frac{4}{9 \log{\left(2 \right)}} + \frac{- \frac{32}{9} + \frac{16 \log{\left(4 \right)}}{3}}{\log{\left(2 \right)}}$$
=
=
             32   16*log(4)
           - -- + ---------
   4         9        3    
-------- + ----------------
9*log(2)        log(2)     
$$\frac{4}{9 \log{\left(2 \right)}} + \frac{- \frac{32}{9} + \frac{16 \log{\left(4 \right)}}{3}}{\log{\left(2 \right)}}$$
4/(9*log(2)) + (-32/9 + 16*log(4)/3)/log(2)
Numerical answer [src]
6.17828209501211
6.17828209501211

    Use the examples entering the upper and lower limits of integration.