Mister Exam

Other calculators


sqrt(x)/(2+x^2)

Integral of sqrt(x)/(2+x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   ___         
 \/ 2          
   /           
  |            
  |     ___    
  |   \/ x     
  |   ------ dx
  |        2   
  |   2 + x    
  |            
 /             
 1             
$$\int\limits_{1}^{\sqrt{2}} \frac{\sqrt{x}}{x^{2} + 2}\, dx$$
Integral(sqrt(x)/(2 + x^2), (x, 1, sqrt(2)))
The answer (Indefinite) [src]
  /                                                                                                                                                              
 |                                                                                                                                                               
 |   ___           4 ___     /    4 ___   ___\   4 ___     /     4 ___   ___\   4 ___    /          ___      3/4   ___\   4 ___    /          ___      3/4   ___\
 | \/ x            \/ 2 *atan\1 + \/ 2 *\/ x /   \/ 2 *atan\-1 + \/ 2 *\/ x /   \/ 2 *log\4*x + 4*\/ 2  + 4*2   *\/ x /   \/ 2 *log\4*x + 4*\/ 2  - 4*2   *\/ x /
 | ------ dx = C + --------------------------- + ---------------------------- - --------------------------------------- + ---------------------------------------
 |      2                       2                             2                                    4                                         4                   
 | 2 + x                                                                                                                                                         
 |                                                                                                                                                               
/                                                                                                                                                                
$$2\,\left(-{{\log \left(x+2^{{{3}\over{4}}}\,\sqrt{x}+\sqrt{2} \right)}\over{2^{{{11}\over{4}}}}}+{{\log \left(x-2^{{{3}\over{4}}} \,\sqrt{x}+\sqrt{2}\right)}\over{2^{{{11}\over{4}}}}}+{{\arctan \left({{2\,\sqrt{x}+2^{{{3}\over{4}}}}\over{2^{{{3}\over{4}}}}} \right)}\over{2^{{{7}\over{4}}}}}+{{\arctan \left({{2\,\sqrt{x}-2^{ {{3}\over{4}}}}\over{2^{{{3}\over{4}}}}}\right)}\over{2^{{{7}\over{4 }}}}}\right)$$
The graph
The answer [src]
4 ___     /    4 ___\   4 ___     /    4 ___\   4 ___    /        ___\   4 ___    /       3/4       ___\      4 ___   4 ___    /         ___\   4 ___    /        ___      3/4\
\/ 2 *atan\1 - \/ 2 /   \/ 2 *atan\1 + \/ 2 /   \/ 2 *log\8 + 8*\/ 2 /   \/ 2 *log\4 - 4*2    + 4*\/ 2 /   pi*\/ 2    \/ 2 *log\-8 + 8*\/ 2 /   \/ 2 *log\4 + 4*\/ 2  + 4*2   /
--------------------- - --------------------- - ---------------------- - ------------------------------- + -------- + ----------------------- + -------------------------------
          2                       2                       4                             4                     4                  4                             4               
$$-{{\log \left(2^{{{3}\over{2}}}+2\right)}\over{2^{{{7}\over{4}}}}}+ {{\log \left(2^{{{3}\over{2}}}-2\right)}\over{2^{{{7}\over{4}}}}}+{{ \log \left(2^{{{3}\over{4}}}+\sqrt{2}+1\right)}\over{2^{{{7}\over{4 }}}}}-{{\log \left(-2^{{{3}\over{4}}}+\sqrt{2}+1\right)}\over{2^{{{7 }\over{4}}}}}-{{\arctan \left(2^{{{1}\over{4}}}+1\right)}\over{2^{{{ 3}\over{4}}}}}-{{\arctan \left(2^{{{1}\over{4}}}-1\right)}\over{2^{ {{3}\over{4}}}}}+{{\pi}\over{2^{{{7}\over{4}}}}}$$
=
=
4 ___     /    4 ___\   4 ___     /    4 ___\   4 ___    /        ___\   4 ___    /       3/4       ___\      4 ___   4 ___    /         ___\   4 ___    /        ___      3/4\
\/ 2 *atan\1 - \/ 2 /   \/ 2 *atan\1 + \/ 2 /   \/ 2 *log\8 + 8*\/ 2 /   \/ 2 *log\4 - 4*2    + 4*\/ 2 /   pi*\/ 2    \/ 2 *log\-8 + 8*\/ 2 /   \/ 2 *log\4 + 4*\/ 2  + 4*2   /
--------------------- - --------------------- - ---------------------- - ------------------------------- + -------- + ----------------------- + -------------------------------
          2                       2                       4                             4                     4                  4                             4               
$$- \frac{\sqrt[4]{2} \log{\left(8 + 8 \sqrt{2} \right)}}{4} - \frac{\sqrt[4]{2} \operatorname{atan}{\left(1 + \sqrt[4]{2} \right)}}{2} - \frac{\sqrt[4]{2} \log{\left(- 4 \cdot 2^{\frac{3}{4}} + 4 + 4 \sqrt{2} \right)}}{4} + \frac{\sqrt[4]{2} \operatorname{atan}{\left(1 - \sqrt[4]{2} \right)}}{2} + \frac{\sqrt[4]{2} \log{\left(-8 + 8 \sqrt{2} \right)}}{4} + \frac{\sqrt[4]{2} \log{\left(4 + 4 \sqrt{2} + 4 \cdot 2^{\frac{3}{4}} \right)}}{4} + \frac{\sqrt[4]{2} \pi}{4}$$
Numerical answer [src]
0.131299925493769
0.131299925493769
The graph
Integral of sqrt(x)/(2+x^2) dx

    Use the examples entering the upper and lower limits of integration.