Mister Exam

Other calculators

Integral of sqrt(x)/(9+4x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |     ___     
 |   \/ x      
 |  -------- dx
 |         2   
 |  9 + 4*x    
 |             
/              
0              
$$\int\limits_{0}^{1} \frac{\sqrt{x}}{4 x^{2} + 9}\, dx$$
Integral(sqrt(x)/(9 + 4*x^2), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                             /        ___   ___\             /         ___   ___\                                 
 |                     ___    /3         ___   ___\     ___     |    2*\/ 3 *\/ x |     ___     |     2*\/ 3 *\/ x |     ___    /3         ___   ___\
 |    ___            \/ 3 *log|- + x + \/ 3 *\/ x |   \/ 3 *atan|1 + -------------|   \/ 3 *atan|-1 + -------------|   \/ 3 *log|- + x - \/ 3 *\/ x |
 |  \/ x                      \2                  /             \          3      /             \           3      /            \2                  /
 | -------- dx = C - ------------------------------ + ----------------------------- + ------------------------------ + ------------------------------
 |        2                        24                               12                              12                               24              
 | 9 + 4*x                                                                                                                                           
 |                                                                                                                                                   
/                                                                                                                                                    
$$\int \frac{\sqrt{x}}{4 x^{2} + 9}\, dx = C + \frac{\sqrt{3} \log{\left(- \sqrt{3} \sqrt{x} + x + \frac{3}{2} \right)}}{24} - \frac{\sqrt{3} \log{\left(\sqrt{3} \sqrt{x} + x + \frac{3}{2} \right)}}{24} + \frac{\sqrt{3} \operatorname{atan}{\left(\frac{2 \sqrt{3} \sqrt{x}}{3} - 1 \right)}}{12} + \frac{\sqrt{3} \operatorname{atan}{\left(\frac{2 \sqrt{3} \sqrt{x}}{3} + 1 \right)}}{12}$$
The graph
The answer [src]
            /        ___\                                       /        ___\                          
    ___     |    2*\/ 3 |                               ___     |    2*\/ 3 |                          
  \/ 3 *atan|1 - -------|     ___    /         ___\   \/ 3 *atan|1 + -------|     ___    /         ___\
            \       3   /   \/ 3 *log\10 + 4*\/ 3 /             \       3   /   \/ 3 *log\10 - 4*\/ 3 /
- ----------------------- - ----------------------- + ----------------------- + -----------------------
             12                        24                        12                        24          
$$- \frac{\sqrt{3} \log{\left(4 \sqrt{3} + 10 \right)}}{24} - \frac{\sqrt{3} \operatorname{atan}{\left(1 - \frac{2 \sqrt{3}}{3} \right)}}{12} + \frac{\sqrt{3} \log{\left(10 - 4 \sqrt{3} \right)}}{24} + \frac{\sqrt{3} \operatorname{atan}{\left(1 + \frac{2 \sqrt{3}}{3} \right)}}{12}$$
=
=
            /        ___\                                       /        ___\                          
    ___     |    2*\/ 3 |                               ___     |    2*\/ 3 |                          
  \/ 3 *atan|1 - -------|     ___    /         ___\   \/ 3 *atan|1 + -------|     ___    /         ___\
            \       3   /   \/ 3 *log\10 + 4*\/ 3 /             \       3   /   \/ 3 *log\10 - 4*\/ 3 /
- ----------------------- - ----------------------- + ----------------------- + -----------------------
             12                        24                        12                        24          
$$- \frac{\sqrt{3} \log{\left(4 \sqrt{3} + 10 \right)}}{24} - \frac{\sqrt{3} \operatorname{atan}{\left(1 - \frac{2 \sqrt{3}}{3} \right)}}{12} + \frac{\sqrt{3} \log{\left(10 - 4 \sqrt{3} \right)}}{24} + \frac{\sqrt{3} \operatorname{atan}{\left(1 + \frac{2 \sqrt{3}}{3} \right)}}{12}$$
-sqrt(3)*atan(1 - 2*sqrt(3)/3)/12 - sqrt(3)*log(10 + 4*sqrt(3))/24 + sqrt(3)*atan(1 + 2*sqrt(3)/3)/12 + sqrt(3)*log(10 - 4*sqrt(3))/24
Numerical answer [src]
0.0629892352901453
0.0629892352901453

    Use the examples entering the upper and lower limits of integration.