Integral of sqrt(2+2cos(x)) dx
The solution
Detail solution
-
Rewrite the integrand:
2cos(x)+2=2cos(x)+1
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(x)+1dx=2∫cos(x)+1dx
-
Don't know the steps in finding this integral.
But the integral is
21−tan2(2x)+1tan2(2x)+tan2(2x)+11tan(2x)
So, the result is: 221−tan2(2x)+1tan2(2x)+tan2(2x)+11tan(2x)
-
Now simplify:
22cos(x)+2tan(2x)
-
Add the constant of integration:
22cos(x)+2tan(2x)+constant
The answer is:
22cos(x)+2tan(2x)+constant
The answer (Indefinite)
[src]
_______________________________
/ / 2/x\
| / tan |-|
| ______________ ___ / 1 \2/ /x\
| \/ 2 + 2*cos(x) dx = C + 2*\/ 2 * / 1 + ----------- - ----------- *tan|-|
| / 2/x\ 2/x\ \2/
/ / 1 + tan |-| 1 + tan |-|
\/ \2/ \2/
(cosx+1)(cosx+1)2sin2x+14sinx
The graph
(cos1+1)sin21+cos31+3cos21+3cos1+14cos21+2cos1+1sin1sin21+cos21+2cos1+1
(4*sqrt(cos(1)^2+2*cos(1)+1)*sin(1)*sqrt(sin(1)^2+cos(1)^2+2*cos(1)+1))/((cos(1)+1)*sin(1)^2+cos(1)^3+3*cos(1)^2+3*cos(1)+1)
Use the examples entering the upper and lower limits of integration.