Integral of sin(5x)*sin(7x) dx
The solution
Detail solution
-
Rewrite the integrand:
sin(5x)sin(7x)=−1024sin12(x)+3072sin10(x)−3456sin8(x)+1792sin6(x)−420sin4(x)+35sin2(x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−1024sin12(x))dx=−1024∫sin12(x)dx
-
Rewrite the integrand:
sin12(x)=(21−2cos(2x))6
-
There are multiple ways to do this integral.
Method #1
-
Rewrite the integrand:
(21−2cos(2x))6=64cos6(2x)−323cos5(2x)+6415cos4(2x)−165cos3(2x)+6415cos2(2x)−323cos(2x)+641
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫64cos6(2x)dx=64∫cos6(2x)dx
-
Rewrite the integrand:
cos6(2x)=(2cos(4x)+21)3
-
Rewrite the integrand:
(2cos(4x)+21)3=8cos3(4x)+83cos2(4x)+83cos(4x)+81
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫8cos3(4x)dx=8∫cos3(4x)dx
-
Rewrite the integrand:
cos3(4x)=(1−sin2(4x))cos(4x)
-
There are multiple ways to do this integral.
Method #1
-
Let u=sin(4x).
Then let du=4cos(4x)dx and substitute du:
∫(41−4u2)du
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫41du=4u
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−4u2)du=−4∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −12u3
The result is: −12u3+4u
Now substitute u back in:
−12sin3(4x)+4sin(4x)
Method #2
-
Rewrite the integrand:
(1−sin2(4x))cos(4x)=−sin2(4x)cos(4x)+cos(4x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin2(4x)cos(4x))dx=−∫sin2(4x)cos(4x)dx
-
Let u=sin(4x).
Then let du=4cos(4x)dx and substitute 4du:
∫16u2du
-
The integral of a constant times a function is the constant times the integral of the function:
∫4u2du=4∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: 12u3
Now substitute u back in:
12sin3(4x)
So, the result is: −12sin3(4x)
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫16cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
The result is: −12sin3(4x)+4sin(4x)
Method #3
-
Rewrite the integrand:
(1−sin2(4x))cos(4x)=−sin2(4x)cos(4x)+cos(4x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin2(4x)cos(4x))dx=−∫sin2(4x)cos(4x)dx
-
Let u=sin(4x).
Then let du=4cos(4x)dx and substitute 4du:
∫16u2du
-
The integral of a constant times a function is the constant times the integral of the function:
∫4u2du=4∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: 12u3
Now substitute u back in:
12sin3(4x)
So, the result is: −12sin3(4x)
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫16cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
The result is: −12sin3(4x)+4sin(4x)
So, the result is: −96sin3(4x)+32sin(4x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫83cos2(4x)dx=83∫cos2(4x)dx
-
Rewrite the integrand:
cos2(4x)=2cos(8x)+21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(8x)dx=2∫cos(8x)dx
-
Let u=8x.
Then let du=8dx and substitute 8du:
∫64cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫8cos(u)du=8∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 8sin(u)
Now substitute u back in:
8sin(8x)
So, the result is: 16sin(8x)
-
The integral of a constant is the constant times the variable of integration:
∫21dx=2x
The result is: 2x+16sin(8x)
So, the result is: 163x+1283sin(8x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫83cos(4x)dx=83∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫16cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: 323sin(4x)
-
The integral of a constant is the constant times the variable of integration:
∫81dx=8x
The result is: 165x−96sin3(4x)+8sin(4x)+1283sin(8x)
So, the result is: 10245x−6144sin3(4x)+512sin(4x)+81923sin(8x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−323cos5(2x))dx=−323∫cos5(2x)dx
-
Rewrite the integrand:
cos5(2x)=(1−sin2(2x))2cos(2x)
-
Let u=2x.
Then let du=2dx and substitute du:
∫(2sin4(u)cos(u)−sin2(u)cos(u)+2cos(u))du
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2sin4(u)cos(u)du=2∫sin4(u)cos(u)du
-
Let u=sin(u).
Then let du=cos(u)du and substitute du:
∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
Now substitute u back in:
5sin5(u)
So, the result is: 10sin5(u)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin2(u)cos(u))du=−∫sin2(u)cos(u)du
-
Let u=sin(u).
Then let du=cos(u)du and substitute du:
∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
Now substitute u back in:
3sin3(u)
So, the result is: −3sin3(u)
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
The result is: 10sin5(u)−3sin3(u)+2sin(u)
Now substitute u back in:
10sin5(2x)−3sin3(2x)+2sin(2x)
So, the result is: −3203sin5(2x)+32sin3(2x)−643sin(2x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫6415cos4(2x)dx=6415∫cos4(2x)dx
-
Rewrite the integrand:
cos4(2x)=(2cos(4x)+21)2
-
Rewrite the integrand:
(2cos(4x)+21)2=4cos2(4x)+2cos(4x)+41
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos2(4x)dx=4∫cos2(4x)dx
-
Rewrite the integrand:
cos2(4x)=2cos(8x)+21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(8x)dx=2∫cos(8x)dx
-
Let u=8x.
Then let du=8dx and substitute 8du:
∫64cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫8cos(u)du=8∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 8sin(u)
Now substitute u back in:
8sin(8x)
So, the result is: 16sin(8x)
-
The integral of a constant is the constant times the variable of integration:
∫21dx=2x
The result is: 2x+16sin(8x)
So, the result is: 8x+64sin(8x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(4x)dx=2∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫16cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: 8sin(4x)
-
The integral of a constant is the constant times the variable of integration:
∫41dx=4x
The result is: 83x+8sin(4x)+64sin(8x)
So, the result is: 51245x+51215sin(4x)+409615sin(8x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−165cos3(2x))dx=−165∫cos3(2x)dx
-
Rewrite the integrand:
cos3(2x)=(1−sin2(2x))cos(2x)
-
Let u=sin(2x).
Then let du=2cos(2x)dx and substitute du:
∫(21−2u2)du
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫21du=2u
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2u2)du=−2∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −6u3
The result is: −6u3+2u
Now substitute u back in:
−6sin3(2x)+2sin(2x)
So, the result is: 965sin3(2x)−325sin(2x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫6415cos2(2x)dx=6415∫cos2(2x)dx
-
Rewrite the integrand:
cos2(2x)=2cos(4x)+21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(4x)dx=2∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫16cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: 8sin(4x)
-
The integral of a constant is the constant times the variable of integration:
∫21dx=2x
The result is: 2x+8sin(4x)
So, the result is: 12815x+51215sin(4x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−323cos(2x))dx=−323∫cos(2x)dx
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
So, the result is: −643sin(2x)
-
The integral of a constant is the constant times the variable of integration:
∫641dx=64x
The result is: 1024231x−3203sin5(2x)+12sin3(2x)−4sin(2x)−6144sin3(4x)+51231sin(4x)+819233sin(8x)
Method #2
-
Rewrite the integrand:
(21−2cos(2x))6=64cos6(2x)−323cos5(2x)+6415cos4(2x)−165cos3(2x)+6415cos2(2x)−323cos(2x)+641
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫64cos6(2x)dx=64∫cos6(2x)dx
-
Rewrite the integrand:
cos6(2x)=(2cos(4x)+21)3
-
Rewrite the integrand:
(2cos(4x)+21)3=8cos3(4x)+83cos2(4x)+83cos(4x)+81
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫8cos3(4x)dx=8∫cos3(4x)dx
-
Rewrite the integrand:
cos3(4x)=(1−sin2(4x))cos(4x)
-
Let u=sin(4x).
Then let du=4cos(4x)dx and substitute du:
∫(41−4u2)du
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫41du=4u
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−4u2)du=−4∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −12u3
The result is: −12u3+4u
Now substitute u back in:
−12sin3(4x)+4sin(4x)
So, the result is: −96sin3(4x)+32sin(4x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫83cos2(4x)dx=83∫cos2(4x)dx
-
Rewrite the integrand:
cos2(4x)=2cos(8x)+21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(8x)dx=2∫cos(8x)dx
-
Let u=8x.
Then let du=8dx and substitute 8du:
∫64cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫8cos(u)du=8∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 8sin(u)
Now substitute u back in:
8sin(8x)
So, the result is: 16sin(8x)
-
The integral of a constant is the constant times the variable of integration:
∫21dx=2x
The result is: 2x+16sin(8x)
So, the result is: 163x+1283sin(8x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫83cos(4x)dx=83∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫16cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: 323sin(4x)
-
The integral of a constant is the constant times the variable of integration:
∫81dx=8x
The result is: 165x−96sin3(4x)+8sin(4x)+1283sin(8x)
So, the result is: 10245x−6144sin3(4x)+512sin(4x)+81923sin(8x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−323cos5(2x))dx=−323∫cos5(2x)dx
-
Rewrite the integrand:
cos5(2x)=(1−sin2(2x))2cos(2x)
-
Let u=2x.
Then let du=2dx and substitute du:
∫(2sin4(u)cos(u)−sin2(u)cos(u)+2cos(u))du
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2sin4(u)cos(u)du=2∫sin4(u)cos(u)du
-
Let u=sin(u).
Then let du=cos(u)du and substitute du:
∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
Now substitute u back in:
5sin5(u)
So, the result is: 10sin5(u)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin2(u)cos(u))du=−∫sin2(u)cos(u)du
-
Let u=sin(u).
Then let du=cos(u)du and substitute du:
∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
Now substitute u back in:
3sin3(u)
So, the result is: −3sin3(u)
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
The result is: 10sin5(u)−3sin3(u)+2sin(u)
Now substitute u back in:
10sin5(2x)−3sin3(2x)+2sin(2x)
So, the result is: −3203sin5(2x)+32sin3(2x)−643sin(2x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫6415cos4(2x)dx=6415∫cos4(2x)dx
-
Rewrite the integrand:
cos4(2x)=(2cos(4x)+21)2
-
Rewrite the integrand:
(2cos(4x)+21)2=4cos2(4x)+2cos(4x)+41
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos2(4x)dx=4∫cos2(4x)dx
-
Rewrite the integrand:
cos2(4x)=2cos(8x)+21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(8x)dx=2∫cos(8x)dx
-
Let u=8x.
Then let du=8dx and substitute 8du:
∫64cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫8cos(u)du=8∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 8sin(u)
Now substitute u back in:
8sin(8x)
So, the result is: 16sin(8x)
-
The integral of a constant is the constant times the variable of integration:
∫21dx=2x
The result is: 2x+16sin(8x)
So, the result is: 8x+64sin(8x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(4x)dx=2∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫16cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: 8sin(4x)
-
The integral of a constant is the constant times the variable of integration:
∫41dx=4x
The result is: 83x+8sin(4x)+64sin(8x)
So, the result is: 51245x+51215sin(4x)+409615sin(8x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−165cos3(2x))dx=−165∫cos3(2x)dx
-
Rewrite the integrand:
cos3(2x)=(1−sin2(2x))cos(2x)
-
Let u=sin(2x).
Then let du=2cos(2x)dx and substitute du:
∫(21−2u2)du
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫21du=2u
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2u2)du=−2∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −6u3
The result is: −6u3+2u
Now substitute u back in:
−6sin3(2x)+2sin(2x)
So, the result is: 965sin3(2x)−325sin(2x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫6415cos2(2x)dx=6415∫cos2(2x)dx
-
Rewrite the integrand:
cos2(2x)=2cos(4x)+21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(4x)dx=2∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫16cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: 8sin(4x)
-
The integral of a constant is the constant times the variable of integration:
∫21dx=2x
The result is: 2x+8sin(4x)
So, the result is: 12815x+51215sin(4x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−323cos(2x))dx=−323∫cos(2x)dx
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
So, the result is: −643sin(2x)
-
The integral of a constant is the constant times the variable of integration:
∫641dx=64x
The result is: 1024231x−3203sin5(2x)+12sin3(2x)−4sin(2x)−6144sin3(4x)+51231sin(4x)+819233sin(8x)
So, the result is: −231x+548sin5(2x)−3256sin3(2x)+256sin(2x)+6sin3(4x)−62sin(4x)−833sin(8x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫3072sin10(x)dx=3072∫sin10(x)dx
-
Rewrite the integrand:
sin10(x)=(21−2cos(2x))5
-
Rewrite the integrand:
(21−2cos(2x))5=−32cos5(2x)+325cos4(2x)−165cos3(2x)+165cos2(2x)−325cos(2x)+321
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−32cos5(2x))dx=−32∫cos5(2x)dx
-
Rewrite the integrand:
cos5(2x)=(1−sin2(2x))2cos(2x)
-
Let u=2x.
Then let du=2dx and substitute du:
∫(2sin4(u)cos(u)−sin2(u)cos(u)+2cos(u))du
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2sin4(u)cos(u)du=2∫sin4(u)cos(u)du
-
Let u=sin(u).
Then let du=cos(u)du and substitute du:
∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
Now substitute u back in:
5sin5(u)
So, the result is: 10sin5(u)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin2(u)cos(u))du=−∫sin2(u)cos(u)du
-
Let u=sin(u).
Then let du=cos(u)du and substitute du:
∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
Now substitute u back in:
3sin3(u)
So, the result is: −3sin3(u)
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
The result is: 10sin5(u)−3sin3(u)+2sin(u)
Now substitute u back in:
10sin5(2x)−3sin3(2x)+2sin(2x)
So, the result is: −320sin5(2x)+96sin3(2x)−64sin(2x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫325cos4(2x)dx=325∫cos4(2x)dx
-
Rewrite the integrand:
cos4(2x)=(2cos(4x)+21)2
-
Rewrite the integrand:
(2cos(4x)+21)2=4cos2(4x)+2cos(4x)+41
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos2(4x)dx=4∫cos2(4x)dx
-
Rewrite the integrand:
cos2(4x)=2cos(8x)+21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(8x)dx=2∫cos(8x)dx
-
Let u=8x.
Then let du=8dx and substitute 8du:
∫64cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫8cos(u)du=8∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 8sin(u)
Now substitute u back in:
8sin(8x)
So, the result is: 16sin(8x)
-
The integral of a constant is the constant times the variable of integration:
∫21dx=2x
The result is: 2x+16sin(8x)
So, the result is: 8x+64sin(8x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(4x)dx=2∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫16cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: 8sin(4x)
-
The integral of a constant is the constant times the variable of integration:
∫41dx=4x
The result is: 83x+8sin(4x)+64sin(8x)
So, the result is: 25615x+2565sin(4x)+20485sin(8x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−165cos3(2x))dx=−165∫cos3(2x)dx
-
Rewrite the integrand:
cos3(2x)=(1−sin2(2x))cos(2x)
-
Let u=sin(2x).
Then let du=2cos(2x)dx and substitute du:
∫(21−2u2)du
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫21du=2u
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2u2)du=−2∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −6u3
The result is: −6u3+2u
Now substitute u back in:
−6sin3(2x)+2sin(2x)
So, the result is: 965sin3(2x)−325sin(2x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫165cos2(2x)dx=165∫cos2(2x)dx
-
Rewrite the integrand:
cos2(2x)=2cos(4x)+21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(4x)dx=2∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫16cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: 8sin(4x)
-
The integral of a constant is the constant times the variable of integration:
∫21dx=2x
The result is: 2x+8sin(4x)
So, the result is: 325x+1285sin(4x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−325cos(2x))dx=−325∫cos(2x)dx
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
So, the result is: −645sin(2x)
-
The integral of a constant is the constant times the variable of integration:
∫321dx=32x
The result is: 25663x−320sin5(2x)+16sin3(2x)−4sin(2x)+25615sin(4x)+20485sin(8x)
So, the result is: 756x−548sin5(2x)+192sin3(2x)−768sin(2x)+180sin(4x)+215sin(8x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−3456sin8(x))dx=−3456∫sin8(x)dx
-
Rewrite the integrand:
sin8(x)=(21−2cos(2x))4
-
Rewrite the integrand:
(21−2cos(2x))4=16cos4(2x)−4cos3(2x)+83cos2(2x)−4cos(2x)+161
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫16cos4(2x)dx=16∫cos4(2x)dx
-
Rewrite the integrand:
cos4(2x)=(2cos(4x)+21)2
-
Rewrite the integrand:
(2cos(4x)+21)2=4cos2(4x)+2cos(4x)+41
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos2(4x)dx=4∫cos2(4x)dx
-
Rewrite the integrand:
cos2(4x)=2cos(8x)+21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(8x)dx=2∫cos(8x)dx
-
Let u=8x.
Then let du=8dx and substitute 8du:
∫64cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫8cos(u)du=8∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 8sin(u)
Now substitute u back in:
8sin(8x)
So, the result is: 16sin(8x)
-
The integral of a constant is the constant times the variable of integration:
∫21dx=2x
The result is: 2x+16sin(8x)
So, the result is: 8x+64sin(8x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(4x)dx=2∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫16cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: 8sin(4x)
-
The integral of a constant is the constant times the variable of integration:
∫41dx=4x
The result is: 83x+8sin(4x)+64sin(8x)
So, the result is: 1283x+128sin(4x)+1024sin(8x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−4cos3(2x))dx=−4∫cos3(2x)dx
-
Rewrite the integrand:
cos3(2x)=(1−sin2(2x))cos(2x)
-
Let u=sin(2x).
Then let du=2cos(2x)dx and substitute du:
∫(21−2u2)du
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫21du=2u
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2u2)du=−2∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −6u3
The result is: −6u3+2u
Now substitute u back in:
−6sin3(2x)+2sin(2x)
So, the result is: 24sin3(2x)−8sin(2x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫83cos2(2x)dx=83∫cos2(2x)dx
-
Rewrite the integrand:
cos2(2x)=2cos(4x)+21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(4x)dx=2∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫16cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: 8sin(4x)
-
The integral of a constant is the constant times the variable of integration:
∫21dx=2x
The result is: 2x+8sin(4x)
So, the result is: 163x+643sin(4x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−4cos(2x))dx=−4∫cos(2x)dx
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
So, the result is: −8sin(2x)
-
The integral of a constant is the constant times the variable of integration:
∫161dx=16x
The result is: 12835x+24sin3(2x)−4sin(2x)+1287sin(4x)+1024sin(8x)
So, the result is: −945x−144sin3(2x)+864sin(2x)−189sin(4x)−827sin(8x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫1792sin6(x)dx=1792∫sin6(x)dx
-
Rewrite the integrand:
sin6(x)=(21−2cos(2x))3
-
Rewrite the integrand:
(21−2cos(2x))3=−8cos3(2x)+83cos2(2x)−83cos(2x)+81
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−8cos3(2x))dx=−8∫cos3(2x)dx
-
Rewrite the integrand:
cos3(2x)=(1−sin2(2x))cos(2x)
-
Let u=sin(2x).
Then let du=2cos(2x)dx and substitute du:
∫(21−2u2)du
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫21du=2u
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2u2)du=−2∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −6u3
The result is: −6u3+2u
Now substitute u back in:
−6sin3(2x)+2sin(2x)
So, the result is: 48sin3(2x)−16sin(2x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫83cos2(2x)dx=83∫cos2(2x)dx
-
Rewrite the integrand:
cos2(2x)=2cos(4x)+21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(4x)dx=2∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫16cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: 8sin(4x)
-
The integral of a constant is the constant times the variable of integration:
∫21dx=2x
The result is: 2x+8sin(4x)
So, the result is: 163x+643sin(4x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−83cos(2x))dx=−83∫cos(2x)dx
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
So, the result is: −163sin(2x)
-
The integral of a constant is the constant times the variable of integration:
∫81dx=8x
The result is: 165x+48sin3(2x)−4sin(2x)+643sin(4x)
So, the result is: 560x+3112sin3(2x)−448sin(2x)+84sin(4x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−420sin4(x))dx=−420∫sin4(x)dx
-
Rewrite the integrand:
sin4(x)=(21−2cos(2x))2
-
Rewrite the integrand:
(21−2cos(2x))2=4cos2(2x)−2cos(2x)+41
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos2(2x)dx=4∫cos2(2x)dx
-
Rewrite the integrand:
cos2(2x)=2cos(4x)+21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(4x)dx=2∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫16cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: 8sin(4x)
-
The integral of a constant is the constant times the variable of integration:
∫21dx=2x
The result is: 2x+8sin(4x)
So, the result is: 8x+32sin(4x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2cos(2x))dx=−2∫cos(2x)dx
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
So, the result is: −4sin(2x)
-
The integral of a constant is the constant times the variable of integration:
∫41dx=4x
The result is: 83x−4sin(2x)+32sin(4x)
So, the result is: −2315x+105sin(2x)−8105sin(4x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫35sin2(x)dx=35∫sin2(x)dx
-
Rewrite the integrand:
sin2(x)=21−2cos(2x)
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫21dx=2x
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2cos(2x))dx=−2∫cos(2x)dx
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
So, the result is: −4sin(2x)
The result is: 2x−4sin(2x)
So, the result is: 235x−435sin(2x)
The result is: 4sin(2x)+6sin3(4x)−8sin(4x)
-
Add the constant of integration:
4sin(2x)+6sin3(4x)−8sin(4x)+constant
The answer is:
4sin(2x)+6sin3(4x)−8sin(4x)+constant
The answer (Indefinite)
[src]
/ 3
| sin(4*x) sin(2*x) sin (4*x)
| sin(5*x)*sin(7*x) dx = C - -------- + -------- + ---------
| 8 4 6
/
4sin(2x)−24sin(12x)
7*cos(7)*sin(5) 5*cos(5)*sin(7)
- --------------- + ---------------
24 24
−24sin12−6sin2
=
7*cos(7)*sin(5) 5*cos(5)*sin(7)
- --------------- + ---------------
24 24
245sin(7)cos(5)−247sin(5)cos(7)
Use the examples entering the upper and lower limits of integration.