Mister Exam

Other calculators

Integral of sin(5x)*sin(7x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |  sin(5*x)*sin(7*x) dx
 |                      
/                       
0                       
01sin(5x)sin(7x)dx\int\limits_{0}^{1} \sin{\left(5 x \right)} \sin{\left(7 x \right)}\, dx
Integral(sin(5*x)*sin(7*x), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    sin(5x)sin(7x)=1024sin12(x)+3072sin10(x)3456sin8(x)+1792sin6(x)420sin4(x)+35sin2(x)\sin{\left(5 x \right)} \sin{\left(7 x \right)} = - 1024 \sin^{12}{\left(x \right)} + 3072 \sin^{10}{\left(x \right)} - 3456 \sin^{8}{\left(x \right)} + 1792 \sin^{6}{\left(x \right)} - 420 \sin^{4}{\left(x \right)} + 35 \sin^{2}{\left(x \right)}

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      (1024sin12(x))dx=1024sin12(x)dx\int \left(- 1024 \sin^{12}{\left(x \right)}\right)\, dx = - 1024 \int \sin^{12}{\left(x \right)}\, dx

      1. Rewrite the integrand:

        sin12(x)=(12cos(2x)2)6\sin^{12}{\left(x \right)} = \left(\frac{1}{2} - \frac{\cos{\left(2 x \right)}}{2}\right)^{6}

      2. There are multiple ways to do this integral.

        Method #1

        1. Rewrite the integrand:

          (12cos(2x)2)6=cos6(2x)643cos5(2x)32+15cos4(2x)645cos3(2x)16+15cos2(2x)643cos(2x)32+164\left(\frac{1}{2} - \frac{\cos{\left(2 x \right)}}{2}\right)^{6} = \frac{\cos^{6}{\left(2 x \right)}}{64} - \frac{3 \cos^{5}{\left(2 x \right)}}{32} + \frac{15 \cos^{4}{\left(2 x \right)}}{64} - \frac{5 \cos^{3}{\left(2 x \right)}}{16} + \frac{15 \cos^{2}{\left(2 x \right)}}{64} - \frac{3 \cos{\left(2 x \right)}}{32} + \frac{1}{64}

        2. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            cos6(2x)64dx=cos6(2x)dx64\int \frac{\cos^{6}{\left(2 x \right)}}{64}\, dx = \frac{\int \cos^{6}{\left(2 x \right)}\, dx}{64}

            1. Rewrite the integrand:

              cos6(2x)=(cos(4x)2+12)3\cos^{6}{\left(2 x \right)} = \left(\frac{\cos{\left(4 x \right)}}{2} + \frac{1}{2}\right)^{3}

            2. Rewrite the integrand:

              (cos(4x)2+12)3=cos3(4x)8+3cos2(4x)8+3cos(4x)8+18\left(\frac{\cos{\left(4 x \right)}}{2} + \frac{1}{2}\right)^{3} = \frac{\cos^{3}{\left(4 x \right)}}{8} + \frac{3 \cos^{2}{\left(4 x \right)}}{8} + \frac{3 \cos{\left(4 x \right)}}{8} + \frac{1}{8}

            3. Integrate term-by-term:

              1. The integral of a constant times a function is the constant times the integral of the function:

                cos3(4x)8dx=cos3(4x)dx8\int \frac{\cos^{3}{\left(4 x \right)}}{8}\, dx = \frac{\int \cos^{3}{\left(4 x \right)}\, dx}{8}

                1. Rewrite the integrand:

                  cos3(4x)=(1sin2(4x))cos(4x)\cos^{3}{\left(4 x \right)} = \left(1 - \sin^{2}{\left(4 x \right)}\right) \cos{\left(4 x \right)}

                2. There are multiple ways to do this integral.

                  Method #1

                  1. Let u=sin(4x)u = \sin{\left(4 x \right)}.

                    Then let du=4cos(4x)dxdu = 4 \cos{\left(4 x \right)} dx and substitute dudu:

                    (14u24)du\int \left(\frac{1}{4} - \frac{u^{2}}{4}\right)\, du

                    1. Integrate term-by-term:

                      1. The integral of a constant is the constant times the variable of integration:

                        14du=u4\int \frac{1}{4}\, du = \frac{u}{4}

                      1. The integral of a constant times a function is the constant times the integral of the function:

                        (u24)du=u2du4\int \left(- \frac{u^{2}}{4}\right)\, du = - \frac{\int u^{2}\, du}{4}

                        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                          u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                        So, the result is: u312- \frac{u^{3}}{12}

                      The result is: u312+u4- \frac{u^{3}}{12} + \frac{u}{4}

                    Now substitute uu back in:

                    sin3(4x)12+sin(4x)4- \frac{\sin^{3}{\left(4 x \right)}}{12} + \frac{\sin{\left(4 x \right)}}{4}

                  Method #2

                  1. Rewrite the integrand:

                    (1sin2(4x))cos(4x)=sin2(4x)cos(4x)+cos(4x)\left(1 - \sin^{2}{\left(4 x \right)}\right) \cos{\left(4 x \right)} = - \sin^{2}{\left(4 x \right)} \cos{\left(4 x \right)} + \cos{\left(4 x \right)}

                  2. Integrate term-by-term:

                    1. The integral of a constant times a function is the constant times the integral of the function:

                      (sin2(4x)cos(4x))dx=sin2(4x)cos(4x)dx\int \left(- \sin^{2}{\left(4 x \right)} \cos{\left(4 x \right)}\right)\, dx = - \int \sin^{2}{\left(4 x \right)} \cos{\left(4 x \right)}\, dx

                      1. Let u=sin(4x)u = \sin{\left(4 x \right)}.

                        Then let du=4cos(4x)dxdu = 4 \cos{\left(4 x \right)} dx and substitute du4\frac{du}{4}:

                        u216du\int \frac{u^{2}}{16}\, du

                        1. The integral of a constant times a function is the constant times the integral of the function:

                          u24du=u2du4\int \frac{u^{2}}{4}\, du = \frac{\int u^{2}\, du}{4}

                          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                            u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                          So, the result is: u312\frac{u^{3}}{12}

                        Now substitute uu back in:

                        sin3(4x)12\frac{\sin^{3}{\left(4 x \right)}}{12}

                      So, the result is: sin3(4x)12- \frac{\sin^{3}{\left(4 x \right)}}{12}

                    1. Let u=4xu = 4 x.

                      Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

                      cos(u)16du\int \frac{\cos{\left(u \right)}}{16}\, du

                      1. The integral of a constant times a function is the constant times the integral of the function:

                        cos(u)4du=cos(u)du4\int \frac{\cos{\left(u \right)}}{4}\, du = \frac{\int \cos{\left(u \right)}\, du}{4}

                        1. The integral of cosine is sine:

                          cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                        So, the result is: sin(u)4\frac{\sin{\left(u \right)}}{4}

                      Now substitute uu back in:

                      sin(4x)4\frac{\sin{\left(4 x \right)}}{4}

                    The result is: sin3(4x)12+sin(4x)4- \frac{\sin^{3}{\left(4 x \right)}}{12} + \frac{\sin{\left(4 x \right)}}{4}

                  Method #3

                  1. Rewrite the integrand:

                    (1sin2(4x))cos(4x)=sin2(4x)cos(4x)+cos(4x)\left(1 - \sin^{2}{\left(4 x \right)}\right) \cos{\left(4 x \right)} = - \sin^{2}{\left(4 x \right)} \cos{\left(4 x \right)} + \cos{\left(4 x \right)}

                  2. Integrate term-by-term:

                    1. The integral of a constant times a function is the constant times the integral of the function:

                      (sin2(4x)cos(4x))dx=sin2(4x)cos(4x)dx\int \left(- \sin^{2}{\left(4 x \right)} \cos{\left(4 x \right)}\right)\, dx = - \int \sin^{2}{\left(4 x \right)} \cos{\left(4 x \right)}\, dx

                      1. Let u=sin(4x)u = \sin{\left(4 x \right)}.

                        Then let du=4cos(4x)dxdu = 4 \cos{\left(4 x \right)} dx and substitute du4\frac{du}{4}:

                        u216du\int \frac{u^{2}}{16}\, du

                        1. The integral of a constant times a function is the constant times the integral of the function:

                          u24du=u2du4\int \frac{u^{2}}{4}\, du = \frac{\int u^{2}\, du}{4}

                          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                            u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                          So, the result is: u312\frac{u^{3}}{12}

                        Now substitute uu back in:

                        sin3(4x)12\frac{\sin^{3}{\left(4 x \right)}}{12}

                      So, the result is: sin3(4x)12- \frac{\sin^{3}{\left(4 x \right)}}{12}

                    1. Let u=4xu = 4 x.

                      Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

                      cos(u)16du\int \frac{\cos{\left(u \right)}}{16}\, du

                      1. The integral of a constant times a function is the constant times the integral of the function:

                        cos(u)4du=cos(u)du4\int \frac{\cos{\left(u \right)}}{4}\, du = \frac{\int \cos{\left(u \right)}\, du}{4}

                        1. The integral of cosine is sine:

                          cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                        So, the result is: sin(u)4\frac{\sin{\left(u \right)}}{4}

                      Now substitute uu back in:

                      sin(4x)4\frac{\sin{\left(4 x \right)}}{4}

                    The result is: sin3(4x)12+sin(4x)4- \frac{\sin^{3}{\left(4 x \right)}}{12} + \frac{\sin{\left(4 x \right)}}{4}

                So, the result is: sin3(4x)96+sin(4x)32- \frac{\sin^{3}{\left(4 x \right)}}{96} + \frac{\sin{\left(4 x \right)}}{32}

              1. The integral of a constant times a function is the constant times the integral of the function:

                3cos2(4x)8dx=3cos2(4x)dx8\int \frac{3 \cos^{2}{\left(4 x \right)}}{8}\, dx = \frac{3 \int \cos^{2}{\left(4 x \right)}\, dx}{8}

                1. Rewrite the integrand:

                  cos2(4x)=cos(8x)2+12\cos^{2}{\left(4 x \right)} = \frac{\cos{\left(8 x \right)}}{2} + \frac{1}{2}

                2. Integrate term-by-term:

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    cos(8x)2dx=cos(8x)dx2\int \frac{\cos{\left(8 x \right)}}{2}\, dx = \frac{\int \cos{\left(8 x \right)}\, dx}{2}

                    1. Let u=8xu = 8 x.

                      Then let du=8dxdu = 8 dx and substitute du8\frac{du}{8}:

                      cos(u)64du\int \frac{\cos{\left(u \right)}}{64}\, du

                      1. The integral of a constant times a function is the constant times the integral of the function:

                        cos(u)8du=cos(u)du8\int \frac{\cos{\left(u \right)}}{8}\, du = \frac{\int \cos{\left(u \right)}\, du}{8}

                        1. The integral of cosine is sine:

                          cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                        So, the result is: sin(u)8\frac{\sin{\left(u \right)}}{8}

                      Now substitute uu back in:

                      sin(8x)8\frac{\sin{\left(8 x \right)}}{8}

                    So, the result is: sin(8x)16\frac{\sin{\left(8 x \right)}}{16}

                  1. The integral of a constant is the constant times the variable of integration:

                    12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

                  The result is: x2+sin(8x)16\frac{x}{2} + \frac{\sin{\left(8 x \right)}}{16}

                So, the result is: 3x16+3sin(8x)128\frac{3 x}{16} + \frac{3 \sin{\left(8 x \right)}}{128}

              1. The integral of a constant times a function is the constant times the integral of the function:

                3cos(4x)8dx=3cos(4x)dx8\int \frac{3 \cos{\left(4 x \right)}}{8}\, dx = \frac{3 \int \cos{\left(4 x \right)}\, dx}{8}

                1. Let u=4xu = 4 x.

                  Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

                  cos(u)16du\int \frac{\cos{\left(u \right)}}{16}\, du

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    cos(u)4du=cos(u)du4\int \frac{\cos{\left(u \right)}}{4}\, du = \frac{\int \cos{\left(u \right)}\, du}{4}

                    1. The integral of cosine is sine:

                      cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                    So, the result is: sin(u)4\frac{\sin{\left(u \right)}}{4}

                  Now substitute uu back in:

                  sin(4x)4\frac{\sin{\left(4 x \right)}}{4}

                So, the result is: 3sin(4x)32\frac{3 \sin{\left(4 x \right)}}{32}

              1. The integral of a constant is the constant times the variable of integration:

                18dx=x8\int \frac{1}{8}\, dx = \frac{x}{8}

              The result is: 5x16sin3(4x)96+sin(4x)8+3sin(8x)128\frac{5 x}{16} - \frac{\sin^{3}{\left(4 x \right)}}{96} + \frac{\sin{\left(4 x \right)}}{8} + \frac{3 \sin{\left(8 x \right)}}{128}

            So, the result is: 5x1024sin3(4x)6144+sin(4x)512+3sin(8x)8192\frac{5 x}{1024} - \frac{\sin^{3}{\left(4 x \right)}}{6144} + \frac{\sin{\left(4 x \right)}}{512} + \frac{3 \sin{\left(8 x \right)}}{8192}

          1. The integral of a constant times a function is the constant times the integral of the function:

            (3cos5(2x)32)dx=3cos5(2x)dx32\int \left(- \frac{3 \cos^{5}{\left(2 x \right)}}{32}\right)\, dx = - \frac{3 \int \cos^{5}{\left(2 x \right)}\, dx}{32}

            1. Rewrite the integrand:

              cos5(2x)=(1sin2(2x))2cos(2x)\cos^{5}{\left(2 x \right)} = \left(1 - \sin^{2}{\left(2 x \right)}\right)^{2} \cos{\left(2 x \right)}

            2. Let u=2xu = 2 x.

              Then let du=2dxdu = 2 dx and substitute dudu:

              (sin4(u)cos(u)2sin2(u)cos(u)+cos(u)2)du\int \left(\frac{\sin^{4}{\left(u \right)} \cos{\left(u \right)}}{2} - \sin^{2}{\left(u \right)} \cos{\left(u \right)} + \frac{\cos{\left(u \right)}}{2}\right)\, du

              1. Integrate term-by-term:

                1. The integral of a constant times a function is the constant times the integral of the function:

                  sin4(u)cos(u)2du=sin4(u)cos(u)du2\int \frac{\sin^{4}{\left(u \right)} \cos{\left(u \right)}}{2}\, du = \frac{\int \sin^{4}{\left(u \right)} \cos{\left(u \right)}\, du}{2}

                  1. Let u=sin(u)u = \sin{\left(u \right)}.

                    Then let du=cos(u)dudu = \cos{\left(u \right)} du and substitute dudu:

                    u4du\int u^{4}\, du

                    1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                      u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

                    Now substitute uu back in:

                    sin5(u)5\frac{\sin^{5}{\left(u \right)}}{5}

                  So, the result is: sin5(u)10\frac{\sin^{5}{\left(u \right)}}{10}

                1. The integral of a constant times a function is the constant times the integral of the function:

                  (sin2(u)cos(u))du=sin2(u)cos(u)du\int \left(- \sin^{2}{\left(u \right)} \cos{\left(u \right)}\right)\, du = - \int \sin^{2}{\left(u \right)} \cos{\left(u \right)}\, du

                  1. Let u=sin(u)u = \sin{\left(u \right)}.

                    Then let du=cos(u)dudu = \cos{\left(u \right)} du and substitute dudu:

                    u2du\int u^{2}\, du

                    1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                      u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                    Now substitute uu back in:

                    sin3(u)3\frac{\sin^{3}{\left(u \right)}}{3}

                  So, the result is: sin3(u)3- \frac{\sin^{3}{\left(u \right)}}{3}

                1. The integral of a constant times a function is the constant times the integral of the function:

                  cos(u)2du=cos(u)du2\int \frac{\cos{\left(u \right)}}{2}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

                  1. The integral of cosine is sine:

                    cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                  So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

                The result is: sin5(u)10sin3(u)3+sin(u)2\frac{\sin^{5}{\left(u \right)}}{10} - \frac{\sin^{3}{\left(u \right)}}{3} + \frac{\sin{\left(u \right)}}{2}

              Now substitute uu back in:

              sin5(2x)10sin3(2x)3+sin(2x)2\frac{\sin^{5}{\left(2 x \right)}}{10} - \frac{\sin^{3}{\left(2 x \right)}}{3} + \frac{\sin{\left(2 x \right)}}{2}

            So, the result is: 3sin5(2x)320+sin3(2x)323sin(2x)64- \frac{3 \sin^{5}{\left(2 x \right)}}{320} + \frac{\sin^{3}{\left(2 x \right)}}{32} - \frac{3 \sin{\left(2 x \right)}}{64}

          1. The integral of a constant times a function is the constant times the integral of the function:

            15cos4(2x)64dx=15cos4(2x)dx64\int \frac{15 \cos^{4}{\left(2 x \right)}}{64}\, dx = \frac{15 \int \cos^{4}{\left(2 x \right)}\, dx}{64}

            1. Rewrite the integrand:

              cos4(2x)=(cos(4x)2+12)2\cos^{4}{\left(2 x \right)} = \left(\frac{\cos{\left(4 x \right)}}{2} + \frac{1}{2}\right)^{2}

            2. Rewrite the integrand:

              (cos(4x)2+12)2=cos2(4x)4+cos(4x)2+14\left(\frac{\cos{\left(4 x \right)}}{2} + \frac{1}{2}\right)^{2} = \frac{\cos^{2}{\left(4 x \right)}}{4} + \frac{\cos{\left(4 x \right)}}{2} + \frac{1}{4}

            3. Integrate term-by-term:

              1. The integral of a constant times a function is the constant times the integral of the function:

                cos2(4x)4dx=cos2(4x)dx4\int \frac{\cos^{2}{\left(4 x \right)}}{4}\, dx = \frac{\int \cos^{2}{\left(4 x \right)}\, dx}{4}

                1. Rewrite the integrand:

                  cos2(4x)=cos(8x)2+12\cos^{2}{\left(4 x \right)} = \frac{\cos{\left(8 x \right)}}{2} + \frac{1}{2}

                2. Integrate term-by-term:

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    cos(8x)2dx=cos(8x)dx2\int \frac{\cos{\left(8 x \right)}}{2}\, dx = \frac{\int \cos{\left(8 x \right)}\, dx}{2}

                    1. Let u=8xu = 8 x.

                      Then let du=8dxdu = 8 dx and substitute du8\frac{du}{8}:

                      cos(u)64du\int \frac{\cos{\left(u \right)}}{64}\, du

                      1. The integral of a constant times a function is the constant times the integral of the function:

                        cos(u)8du=cos(u)du8\int \frac{\cos{\left(u \right)}}{8}\, du = \frac{\int \cos{\left(u \right)}\, du}{8}

                        1. The integral of cosine is sine:

                          cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                        So, the result is: sin(u)8\frac{\sin{\left(u \right)}}{8}

                      Now substitute uu back in:

                      sin(8x)8\frac{\sin{\left(8 x \right)}}{8}

                    So, the result is: sin(8x)16\frac{\sin{\left(8 x \right)}}{16}

                  1. The integral of a constant is the constant times the variable of integration:

                    12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

                  The result is: x2+sin(8x)16\frac{x}{2} + \frac{\sin{\left(8 x \right)}}{16}

                So, the result is: x8+sin(8x)64\frac{x}{8} + \frac{\sin{\left(8 x \right)}}{64}

              1. The integral of a constant times a function is the constant times the integral of the function:

                cos(4x)2dx=cos(4x)dx2\int \frac{\cos{\left(4 x \right)}}{2}\, dx = \frac{\int \cos{\left(4 x \right)}\, dx}{2}

                1. Let u=4xu = 4 x.

                  Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

                  cos(u)16du\int \frac{\cos{\left(u \right)}}{16}\, du

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    cos(u)4du=cos(u)du4\int \frac{\cos{\left(u \right)}}{4}\, du = \frac{\int \cos{\left(u \right)}\, du}{4}

                    1. The integral of cosine is sine:

                      cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                    So, the result is: sin(u)4\frac{\sin{\left(u \right)}}{4}

                  Now substitute uu back in:

                  sin(4x)4\frac{\sin{\left(4 x \right)}}{4}

                So, the result is: sin(4x)8\frac{\sin{\left(4 x \right)}}{8}

              1. The integral of a constant is the constant times the variable of integration:

                14dx=x4\int \frac{1}{4}\, dx = \frac{x}{4}

              The result is: 3x8+sin(4x)8+sin(8x)64\frac{3 x}{8} + \frac{\sin{\left(4 x \right)}}{8} + \frac{\sin{\left(8 x \right)}}{64}

            So, the result is: 45x512+15sin(4x)512+15sin(8x)4096\frac{45 x}{512} + \frac{15 \sin{\left(4 x \right)}}{512} + \frac{15 \sin{\left(8 x \right)}}{4096}

          1. The integral of a constant times a function is the constant times the integral of the function:

            (5cos3(2x)16)dx=5cos3(2x)dx16\int \left(- \frac{5 \cos^{3}{\left(2 x \right)}}{16}\right)\, dx = - \frac{5 \int \cos^{3}{\left(2 x \right)}\, dx}{16}

            1. Rewrite the integrand:

              cos3(2x)=(1sin2(2x))cos(2x)\cos^{3}{\left(2 x \right)} = \left(1 - \sin^{2}{\left(2 x \right)}\right) \cos{\left(2 x \right)}

            2. Let u=sin(2x)u = \sin{\left(2 x \right)}.

              Then let du=2cos(2x)dxdu = 2 \cos{\left(2 x \right)} dx and substitute dudu:

              (12u22)du\int \left(\frac{1}{2} - \frac{u^{2}}{2}\right)\, du

              1. Integrate term-by-term:

                1. The integral of a constant is the constant times the variable of integration:

                  12du=u2\int \frac{1}{2}\, du = \frac{u}{2}

                1. The integral of a constant times a function is the constant times the integral of the function:

                  (u22)du=u2du2\int \left(- \frac{u^{2}}{2}\right)\, du = - \frac{\int u^{2}\, du}{2}

                  1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                    u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                  So, the result is: u36- \frac{u^{3}}{6}

                The result is: u36+u2- \frac{u^{3}}{6} + \frac{u}{2}

              Now substitute uu back in:

              sin3(2x)6+sin(2x)2- \frac{\sin^{3}{\left(2 x \right)}}{6} + \frac{\sin{\left(2 x \right)}}{2}

            So, the result is: 5sin3(2x)965sin(2x)32\frac{5 \sin^{3}{\left(2 x \right)}}{96} - \frac{5 \sin{\left(2 x \right)}}{32}

          1. The integral of a constant times a function is the constant times the integral of the function:

            15cos2(2x)64dx=15cos2(2x)dx64\int \frac{15 \cos^{2}{\left(2 x \right)}}{64}\, dx = \frac{15 \int \cos^{2}{\left(2 x \right)}\, dx}{64}

            1. Rewrite the integrand:

              cos2(2x)=cos(4x)2+12\cos^{2}{\left(2 x \right)} = \frac{\cos{\left(4 x \right)}}{2} + \frac{1}{2}

            2. Integrate term-by-term:

              1. The integral of a constant times a function is the constant times the integral of the function:

                cos(4x)2dx=cos(4x)dx2\int \frac{\cos{\left(4 x \right)}}{2}\, dx = \frac{\int \cos{\left(4 x \right)}\, dx}{2}

                1. Let u=4xu = 4 x.

                  Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

                  cos(u)16du\int \frac{\cos{\left(u \right)}}{16}\, du

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    cos(u)4du=cos(u)du4\int \frac{\cos{\left(u \right)}}{4}\, du = \frac{\int \cos{\left(u \right)}\, du}{4}

                    1. The integral of cosine is sine:

                      cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                    So, the result is: sin(u)4\frac{\sin{\left(u \right)}}{4}

                  Now substitute uu back in:

                  sin(4x)4\frac{\sin{\left(4 x \right)}}{4}

                So, the result is: sin(4x)8\frac{\sin{\left(4 x \right)}}{8}

              1. The integral of a constant is the constant times the variable of integration:

                12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

              The result is: x2+sin(4x)8\frac{x}{2} + \frac{\sin{\left(4 x \right)}}{8}

            So, the result is: 15x128+15sin(4x)512\frac{15 x}{128} + \frac{15 \sin{\left(4 x \right)}}{512}

          1. The integral of a constant times a function is the constant times the integral of the function:

            (3cos(2x)32)dx=3cos(2x)dx32\int \left(- \frac{3 \cos{\left(2 x \right)}}{32}\right)\, dx = - \frac{3 \int \cos{\left(2 x \right)}\, dx}{32}

            1. Let u=2xu = 2 x.

              Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

              cos(u)4du\int \frac{\cos{\left(u \right)}}{4}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                cos(u)2du=cos(u)du2\int \frac{\cos{\left(u \right)}}{2}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

                1. The integral of cosine is sine:

                  cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

              Now substitute uu back in:

              sin(2x)2\frac{\sin{\left(2 x \right)}}{2}

            So, the result is: 3sin(2x)64- \frac{3 \sin{\left(2 x \right)}}{64}

          1. The integral of a constant is the constant times the variable of integration:

            164dx=x64\int \frac{1}{64}\, dx = \frac{x}{64}

          The result is: 231x10243sin5(2x)320+sin3(2x)12sin(2x)4sin3(4x)6144+31sin(4x)512+33sin(8x)8192\frac{231 x}{1024} - \frac{3 \sin^{5}{\left(2 x \right)}}{320} + \frac{\sin^{3}{\left(2 x \right)}}{12} - \frac{\sin{\left(2 x \right)}}{4} - \frac{\sin^{3}{\left(4 x \right)}}{6144} + \frac{31 \sin{\left(4 x \right)}}{512} + \frac{33 \sin{\left(8 x \right)}}{8192}

        Method #2

        1. Rewrite the integrand:

          (12cos(2x)2)6=cos6(2x)643cos5(2x)32+15cos4(2x)645cos3(2x)16+15cos2(2x)643cos(2x)32+164\left(\frac{1}{2} - \frac{\cos{\left(2 x \right)}}{2}\right)^{6} = \frac{\cos^{6}{\left(2 x \right)}}{64} - \frac{3 \cos^{5}{\left(2 x \right)}}{32} + \frac{15 \cos^{4}{\left(2 x \right)}}{64} - \frac{5 \cos^{3}{\left(2 x \right)}}{16} + \frac{15 \cos^{2}{\left(2 x \right)}}{64} - \frac{3 \cos{\left(2 x \right)}}{32} + \frac{1}{64}

        2. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            cos6(2x)64dx=cos6(2x)dx64\int \frac{\cos^{6}{\left(2 x \right)}}{64}\, dx = \frac{\int \cos^{6}{\left(2 x \right)}\, dx}{64}

            1. Rewrite the integrand:

              cos6(2x)=(cos(4x)2+12)3\cos^{6}{\left(2 x \right)} = \left(\frac{\cos{\left(4 x \right)}}{2} + \frac{1}{2}\right)^{3}

            2. Rewrite the integrand:

              (cos(4x)2+12)3=cos3(4x)8+3cos2(4x)8+3cos(4x)8+18\left(\frac{\cos{\left(4 x \right)}}{2} + \frac{1}{2}\right)^{3} = \frac{\cos^{3}{\left(4 x \right)}}{8} + \frac{3 \cos^{2}{\left(4 x \right)}}{8} + \frac{3 \cos{\left(4 x \right)}}{8} + \frac{1}{8}

            3. Integrate term-by-term:

              1. The integral of a constant times a function is the constant times the integral of the function:

                cos3(4x)8dx=cos3(4x)dx8\int \frac{\cos^{3}{\left(4 x \right)}}{8}\, dx = \frac{\int \cos^{3}{\left(4 x \right)}\, dx}{8}

                1. Rewrite the integrand:

                  cos3(4x)=(1sin2(4x))cos(4x)\cos^{3}{\left(4 x \right)} = \left(1 - \sin^{2}{\left(4 x \right)}\right) \cos{\left(4 x \right)}

                2. Let u=sin(4x)u = \sin{\left(4 x \right)}.

                  Then let du=4cos(4x)dxdu = 4 \cos{\left(4 x \right)} dx and substitute dudu:

                  (14u24)du\int \left(\frac{1}{4} - \frac{u^{2}}{4}\right)\, du

                  1. Integrate term-by-term:

                    1. The integral of a constant is the constant times the variable of integration:

                      14du=u4\int \frac{1}{4}\, du = \frac{u}{4}

                    1. The integral of a constant times a function is the constant times the integral of the function:

                      (u24)du=u2du4\int \left(- \frac{u^{2}}{4}\right)\, du = - \frac{\int u^{2}\, du}{4}

                      1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                        u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                      So, the result is: u312- \frac{u^{3}}{12}

                    The result is: u312+u4- \frac{u^{3}}{12} + \frac{u}{4}

                  Now substitute uu back in:

                  sin3(4x)12+sin(4x)4- \frac{\sin^{3}{\left(4 x \right)}}{12} + \frac{\sin{\left(4 x \right)}}{4}

                So, the result is: sin3(4x)96+sin(4x)32- \frac{\sin^{3}{\left(4 x \right)}}{96} + \frac{\sin{\left(4 x \right)}}{32}

              1. The integral of a constant times a function is the constant times the integral of the function:

                3cos2(4x)8dx=3cos2(4x)dx8\int \frac{3 \cos^{2}{\left(4 x \right)}}{8}\, dx = \frac{3 \int \cos^{2}{\left(4 x \right)}\, dx}{8}

                1. Rewrite the integrand:

                  cos2(4x)=cos(8x)2+12\cos^{2}{\left(4 x \right)} = \frac{\cos{\left(8 x \right)}}{2} + \frac{1}{2}

                2. Integrate term-by-term:

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    cos(8x)2dx=cos(8x)dx2\int \frac{\cos{\left(8 x \right)}}{2}\, dx = \frac{\int \cos{\left(8 x \right)}\, dx}{2}

                    1. Let u=8xu = 8 x.

                      Then let du=8dxdu = 8 dx and substitute du8\frac{du}{8}:

                      cos(u)64du\int \frac{\cos{\left(u \right)}}{64}\, du

                      1. The integral of a constant times a function is the constant times the integral of the function:

                        cos(u)8du=cos(u)du8\int \frac{\cos{\left(u \right)}}{8}\, du = \frac{\int \cos{\left(u \right)}\, du}{8}

                        1. The integral of cosine is sine:

                          cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                        So, the result is: sin(u)8\frac{\sin{\left(u \right)}}{8}

                      Now substitute uu back in:

                      sin(8x)8\frac{\sin{\left(8 x \right)}}{8}

                    So, the result is: sin(8x)16\frac{\sin{\left(8 x \right)}}{16}

                  1. The integral of a constant is the constant times the variable of integration:

                    12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

                  The result is: x2+sin(8x)16\frac{x}{2} + \frac{\sin{\left(8 x \right)}}{16}

                So, the result is: 3x16+3sin(8x)128\frac{3 x}{16} + \frac{3 \sin{\left(8 x \right)}}{128}

              1. The integral of a constant times a function is the constant times the integral of the function:

                3cos(4x)8dx=3cos(4x)dx8\int \frac{3 \cos{\left(4 x \right)}}{8}\, dx = \frac{3 \int \cos{\left(4 x \right)}\, dx}{8}

                1. Let u=4xu = 4 x.

                  Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

                  cos(u)16du\int \frac{\cos{\left(u \right)}}{16}\, du

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    cos(u)4du=cos(u)du4\int \frac{\cos{\left(u \right)}}{4}\, du = \frac{\int \cos{\left(u \right)}\, du}{4}

                    1. The integral of cosine is sine:

                      cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                    So, the result is: sin(u)4\frac{\sin{\left(u \right)}}{4}

                  Now substitute uu back in:

                  sin(4x)4\frac{\sin{\left(4 x \right)}}{4}

                So, the result is: 3sin(4x)32\frac{3 \sin{\left(4 x \right)}}{32}

              1. The integral of a constant is the constant times the variable of integration:

                18dx=x8\int \frac{1}{8}\, dx = \frac{x}{8}

              The result is: 5x16sin3(4x)96+sin(4x)8+3sin(8x)128\frac{5 x}{16} - \frac{\sin^{3}{\left(4 x \right)}}{96} + \frac{\sin{\left(4 x \right)}}{8} + \frac{3 \sin{\left(8 x \right)}}{128}

            So, the result is: 5x1024sin3(4x)6144+sin(4x)512+3sin(8x)8192\frac{5 x}{1024} - \frac{\sin^{3}{\left(4 x \right)}}{6144} + \frac{\sin{\left(4 x \right)}}{512} + \frac{3 \sin{\left(8 x \right)}}{8192}

          1. The integral of a constant times a function is the constant times the integral of the function:

            (3cos5(2x)32)dx=3cos5(2x)dx32\int \left(- \frac{3 \cos^{5}{\left(2 x \right)}}{32}\right)\, dx = - \frac{3 \int \cos^{5}{\left(2 x \right)}\, dx}{32}

            1. Rewrite the integrand:

              cos5(2x)=(1sin2(2x))2cos(2x)\cos^{5}{\left(2 x \right)} = \left(1 - \sin^{2}{\left(2 x \right)}\right)^{2} \cos{\left(2 x \right)}

            2. Let u=2xu = 2 x.

              Then let du=2dxdu = 2 dx and substitute dudu:

              (sin4(u)cos(u)2sin2(u)cos(u)+cos(u)2)du\int \left(\frac{\sin^{4}{\left(u \right)} \cos{\left(u \right)}}{2} - \sin^{2}{\left(u \right)} \cos{\left(u \right)} + \frac{\cos{\left(u \right)}}{2}\right)\, du

              1. Integrate term-by-term:

                1. The integral of a constant times a function is the constant times the integral of the function:

                  sin4(u)cos(u)2du=sin4(u)cos(u)du2\int \frac{\sin^{4}{\left(u \right)} \cos{\left(u \right)}}{2}\, du = \frac{\int \sin^{4}{\left(u \right)} \cos{\left(u \right)}\, du}{2}

                  1. Let u=sin(u)u = \sin{\left(u \right)}.

                    Then let du=cos(u)dudu = \cos{\left(u \right)} du and substitute dudu:

                    u4du\int u^{4}\, du

                    1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                      u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

                    Now substitute uu back in:

                    sin5(u)5\frac{\sin^{5}{\left(u \right)}}{5}

                  So, the result is: sin5(u)10\frac{\sin^{5}{\left(u \right)}}{10}

                1. The integral of a constant times a function is the constant times the integral of the function:

                  (sin2(u)cos(u))du=sin2(u)cos(u)du\int \left(- \sin^{2}{\left(u \right)} \cos{\left(u \right)}\right)\, du = - \int \sin^{2}{\left(u \right)} \cos{\left(u \right)}\, du

                  1. Let u=sin(u)u = \sin{\left(u \right)}.

                    Then let du=cos(u)dudu = \cos{\left(u \right)} du and substitute dudu:

                    u2du\int u^{2}\, du

                    1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                      u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                    Now substitute uu back in:

                    sin3(u)3\frac{\sin^{3}{\left(u \right)}}{3}

                  So, the result is: sin3(u)3- \frac{\sin^{3}{\left(u \right)}}{3}

                1. The integral of a constant times a function is the constant times the integral of the function:

                  cos(u)2du=cos(u)du2\int \frac{\cos{\left(u \right)}}{2}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

                  1. The integral of cosine is sine:

                    cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                  So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

                The result is: sin5(u)10sin3(u)3+sin(u)2\frac{\sin^{5}{\left(u \right)}}{10} - \frac{\sin^{3}{\left(u \right)}}{3} + \frac{\sin{\left(u \right)}}{2}

              Now substitute uu back in:

              sin5(2x)10sin3(2x)3+sin(2x)2\frac{\sin^{5}{\left(2 x \right)}}{10} - \frac{\sin^{3}{\left(2 x \right)}}{3} + \frac{\sin{\left(2 x \right)}}{2}

            So, the result is: 3sin5(2x)320+sin3(2x)323sin(2x)64- \frac{3 \sin^{5}{\left(2 x \right)}}{320} + \frac{\sin^{3}{\left(2 x \right)}}{32} - \frac{3 \sin{\left(2 x \right)}}{64}

          1. The integral of a constant times a function is the constant times the integral of the function:

            15cos4(2x)64dx=15cos4(2x)dx64\int \frac{15 \cos^{4}{\left(2 x \right)}}{64}\, dx = \frac{15 \int \cos^{4}{\left(2 x \right)}\, dx}{64}

            1. Rewrite the integrand:

              cos4(2x)=(cos(4x)2+12)2\cos^{4}{\left(2 x \right)} = \left(\frac{\cos{\left(4 x \right)}}{2} + \frac{1}{2}\right)^{2}

            2. Rewrite the integrand:

              (cos(4x)2+12)2=cos2(4x)4+cos(4x)2+14\left(\frac{\cos{\left(4 x \right)}}{2} + \frac{1}{2}\right)^{2} = \frac{\cos^{2}{\left(4 x \right)}}{4} + \frac{\cos{\left(4 x \right)}}{2} + \frac{1}{4}

            3. Integrate term-by-term:

              1. The integral of a constant times a function is the constant times the integral of the function:

                cos2(4x)4dx=cos2(4x)dx4\int \frac{\cos^{2}{\left(4 x \right)}}{4}\, dx = \frac{\int \cos^{2}{\left(4 x \right)}\, dx}{4}

                1. Rewrite the integrand:

                  cos2(4x)=cos(8x)2+12\cos^{2}{\left(4 x \right)} = \frac{\cos{\left(8 x \right)}}{2} + \frac{1}{2}

                2. Integrate term-by-term:

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    cos(8x)2dx=cos(8x)dx2\int \frac{\cos{\left(8 x \right)}}{2}\, dx = \frac{\int \cos{\left(8 x \right)}\, dx}{2}

                    1. Let u=8xu = 8 x.

                      Then let du=8dxdu = 8 dx and substitute du8\frac{du}{8}:

                      cos(u)64du\int \frac{\cos{\left(u \right)}}{64}\, du

                      1. The integral of a constant times a function is the constant times the integral of the function:

                        cos(u)8du=cos(u)du8\int \frac{\cos{\left(u \right)}}{8}\, du = \frac{\int \cos{\left(u \right)}\, du}{8}

                        1. The integral of cosine is sine:

                          cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                        So, the result is: sin(u)8\frac{\sin{\left(u \right)}}{8}

                      Now substitute uu back in:

                      sin(8x)8\frac{\sin{\left(8 x \right)}}{8}

                    So, the result is: sin(8x)16\frac{\sin{\left(8 x \right)}}{16}

                  1. The integral of a constant is the constant times the variable of integration:

                    12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

                  The result is: x2+sin(8x)16\frac{x}{2} + \frac{\sin{\left(8 x \right)}}{16}

                So, the result is: x8+sin(8x)64\frac{x}{8} + \frac{\sin{\left(8 x \right)}}{64}

              1. The integral of a constant times a function is the constant times the integral of the function:

                cos(4x)2dx=cos(4x)dx2\int \frac{\cos{\left(4 x \right)}}{2}\, dx = \frac{\int \cos{\left(4 x \right)}\, dx}{2}

                1. Let u=4xu = 4 x.

                  Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

                  cos(u)16du\int \frac{\cos{\left(u \right)}}{16}\, du

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    cos(u)4du=cos(u)du4\int \frac{\cos{\left(u \right)}}{4}\, du = \frac{\int \cos{\left(u \right)}\, du}{4}

                    1. The integral of cosine is sine:

                      cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                    So, the result is: sin(u)4\frac{\sin{\left(u \right)}}{4}

                  Now substitute uu back in:

                  sin(4x)4\frac{\sin{\left(4 x \right)}}{4}

                So, the result is: sin(4x)8\frac{\sin{\left(4 x \right)}}{8}

              1. The integral of a constant is the constant times the variable of integration:

                14dx=x4\int \frac{1}{4}\, dx = \frac{x}{4}

              The result is: 3x8+sin(4x)8+sin(8x)64\frac{3 x}{8} + \frac{\sin{\left(4 x \right)}}{8} + \frac{\sin{\left(8 x \right)}}{64}

            So, the result is: 45x512+15sin(4x)512+15sin(8x)4096\frac{45 x}{512} + \frac{15 \sin{\left(4 x \right)}}{512} + \frac{15 \sin{\left(8 x \right)}}{4096}

          1. The integral of a constant times a function is the constant times the integral of the function:

            (5cos3(2x)16)dx=5cos3(2x)dx16\int \left(- \frac{5 \cos^{3}{\left(2 x \right)}}{16}\right)\, dx = - \frac{5 \int \cos^{3}{\left(2 x \right)}\, dx}{16}

            1. Rewrite the integrand:

              cos3(2x)=(1sin2(2x))cos(2x)\cos^{3}{\left(2 x \right)} = \left(1 - \sin^{2}{\left(2 x \right)}\right) \cos{\left(2 x \right)}

            2. Let u=sin(2x)u = \sin{\left(2 x \right)}.

              Then let du=2cos(2x)dxdu = 2 \cos{\left(2 x \right)} dx and substitute dudu:

              (12u22)du\int \left(\frac{1}{2} - \frac{u^{2}}{2}\right)\, du

              1. Integrate term-by-term:

                1. The integral of a constant is the constant times the variable of integration:

                  12du=u2\int \frac{1}{2}\, du = \frac{u}{2}

                1. The integral of a constant times a function is the constant times the integral of the function:

                  (u22)du=u2du2\int \left(- \frac{u^{2}}{2}\right)\, du = - \frac{\int u^{2}\, du}{2}

                  1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                    u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                  So, the result is: u36- \frac{u^{3}}{6}

                The result is: u36+u2- \frac{u^{3}}{6} + \frac{u}{2}

              Now substitute uu back in:

              sin3(2x)6+sin(2x)2- \frac{\sin^{3}{\left(2 x \right)}}{6} + \frac{\sin{\left(2 x \right)}}{2}

            So, the result is: 5sin3(2x)965sin(2x)32\frac{5 \sin^{3}{\left(2 x \right)}}{96} - \frac{5 \sin{\left(2 x \right)}}{32}

          1. The integral of a constant times a function is the constant times the integral of the function:

            15cos2(2x)64dx=15cos2(2x)dx64\int \frac{15 \cos^{2}{\left(2 x \right)}}{64}\, dx = \frac{15 \int \cos^{2}{\left(2 x \right)}\, dx}{64}

            1. Rewrite the integrand:

              cos2(2x)=cos(4x)2+12\cos^{2}{\left(2 x \right)} = \frac{\cos{\left(4 x \right)}}{2} + \frac{1}{2}

            2. Integrate term-by-term:

              1. The integral of a constant times a function is the constant times the integral of the function:

                cos(4x)2dx=cos(4x)dx2\int \frac{\cos{\left(4 x \right)}}{2}\, dx = \frac{\int \cos{\left(4 x \right)}\, dx}{2}

                1. Let u=4xu = 4 x.

                  Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

                  cos(u)16du\int \frac{\cos{\left(u \right)}}{16}\, du

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    cos(u)4du=cos(u)du4\int \frac{\cos{\left(u \right)}}{4}\, du = \frac{\int \cos{\left(u \right)}\, du}{4}

                    1. The integral of cosine is sine:

                      cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                    So, the result is: sin(u)4\frac{\sin{\left(u \right)}}{4}

                  Now substitute uu back in:

                  sin(4x)4\frac{\sin{\left(4 x \right)}}{4}

                So, the result is: sin(4x)8\frac{\sin{\left(4 x \right)}}{8}

              1. The integral of a constant is the constant times the variable of integration:

                12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

              The result is: x2+sin(4x)8\frac{x}{2} + \frac{\sin{\left(4 x \right)}}{8}

            So, the result is: 15x128+15sin(4x)512\frac{15 x}{128} + \frac{15 \sin{\left(4 x \right)}}{512}

          1. The integral of a constant times a function is the constant times the integral of the function:

            (3cos(2x)32)dx=3cos(2x)dx32\int \left(- \frac{3 \cos{\left(2 x \right)}}{32}\right)\, dx = - \frac{3 \int \cos{\left(2 x \right)}\, dx}{32}

            1. Let u=2xu = 2 x.

              Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

              cos(u)4du\int \frac{\cos{\left(u \right)}}{4}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                cos(u)2du=cos(u)du2\int \frac{\cos{\left(u \right)}}{2}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

                1. The integral of cosine is sine:

                  cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

              Now substitute uu back in:

              sin(2x)2\frac{\sin{\left(2 x \right)}}{2}

            So, the result is: 3sin(2x)64- \frac{3 \sin{\left(2 x \right)}}{64}

          1. The integral of a constant is the constant times the variable of integration:

            164dx=x64\int \frac{1}{64}\, dx = \frac{x}{64}

          The result is: 231x10243sin5(2x)320+sin3(2x)12sin(2x)4sin3(4x)6144+31sin(4x)512+33sin(8x)8192\frac{231 x}{1024} - \frac{3 \sin^{5}{\left(2 x \right)}}{320} + \frac{\sin^{3}{\left(2 x \right)}}{12} - \frac{\sin{\left(2 x \right)}}{4} - \frac{\sin^{3}{\left(4 x \right)}}{6144} + \frac{31 \sin{\left(4 x \right)}}{512} + \frac{33 \sin{\left(8 x \right)}}{8192}

      So, the result is: 231x+48sin5(2x)5256sin3(2x)3+256sin(2x)+sin3(4x)662sin(4x)33sin(8x)8- 231 x + \frac{48 \sin^{5}{\left(2 x \right)}}{5} - \frac{256 \sin^{3}{\left(2 x \right)}}{3} + 256 \sin{\left(2 x \right)} + \frac{\sin^{3}{\left(4 x \right)}}{6} - 62 \sin{\left(4 x \right)} - \frac{33 \sin{\left(8 x \right)}}{8}

    1. The integral of a constant times a function is the constant times the integral of the function:

      3072sin10(x)dx=3072sin10(x)dx\int 3072 \sin^{10}{\left(x \right)}\, dx = 3072 \int \sin^{10}{\left(x \right)}\, dx

      1. Rewrite the integrand:

        sin10(x)=(12cos(2x)2)5\sin^{10}{\left(x \right)} = \left(\frac{1}{2} - \frac{\cos{\left(2 x \right)}}{2}\right)^{5}

      2. Rewrite the integrand:

        (12cos(2x)2)5=cos5(2x)32+5cos4(2x)325cos3(2x)16+5cos2(2x)165cos(2x)32+132\left(\frac{1}{2} - \frac{\cos{\left(2 x \right)}}{2}\right)^{5} = - \frac{\cos^{5}{\left(2 x \right)}}{32} + \frac{5 \cos^{4}{\left(2 x \right)}}{32} - \frac{5 \cos^{3}{\left(2 x \right)}}{16} + \frac{5 \cos^{2}{\left(2 x \right)}}{16} - \frac{5 \cos{\left(2 x \right)}}{32} + \frac{1}{32}

      3. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          (cos5(2x)32)dx=cos5(2x)dx32\int \left(- \frac{\cos^{5}{\left(2 x \right)}}{32}\right)\, dx = - \frac{\int \cos^{5}{\left(2 x \right)}\, dx}{32}

          1. Rewrite the integrand:

            cos5(2x)=(1sin2(2x))2cos(2x)\cos^{5}{\left(2 x \right)} = \left(1 - \sin^{2}{\left(2 x \right)}\right)^{2} \cos{\left(2 x \right)}

          2. Let u=2xu = 2 x.

            Then let du=2dxdu = 2 dx and substitute dudu:

            (sin4(u)cos(u)2sin2(u)cos(u)+cos(u)2)du\int \left(\frac{\sin^{4}{\left(u \right)} \cos{\left(u \right)}}{2} - \sin^{2}{\left(u \right)} \cos{\left(u \right)} + \frac{\cos{\left(u \right)}}{2}\right)\, du

            1. Integrate term-by-term:

              1. The integral of a constant times a function is the constant times the integral of the function:

                sin4(u)cos(u)2du=sin4(u)cos(u)du2\int \frac{\sin^{4}{\left(u \right)} \cos{\left(u \right)}}{2}\, du = \frac{\int \sin^{4}{\left(u \right)} \cos{\left(u \right)}\, du}{2}

                1. Let u=sin(u)u = \sin{\left(u \right)}.

                  Then let du=cos(u)dudu = \cos{\left(u \right)} du and substitute dudu:

                  u4du\int u^{4}\, du

                  1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                    u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

                  Now substitute uu back in:

                  sin5(u)5\frac{\sin^{5}{\left(u \right)}}{5}

                So, the result is: sin5(u)10\frac{\sin^{5}{\left(u \right)}}{10}

              1. The integral of a constant times a function is the constant times the integral of the function:

                (sin2(u)cos(u))du=sin2(u)cos(u)du\int \left(- \sin^{2}{\left(u \right)} \cos{\left(u \right)}\right)\, du = - \int \sin^{2}{\left(u \right)} \cos{\left(u \right)}\, du

                1. Let u=sin(u)u = \sin{\left(u \right)}.

                  Then let du=cos(u)dudu = \cos{\left(u \right)} du and substitute dudu:

                  u2du\int u^{2}\, du

                  1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                    u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                  Now substitute uu back in:

                  sin3(u)3\frac{\sin^{3}{\left(u \right)}}{3}

                So, the result is: sin3(u)3- \frac{\sin^{3}{\left(u \right)}}{3}

              1. The integral of a constant times a function is the constant times the integral of the function:

                cos(u)2du=cos(u)du2\int \frac{\cos{\left(u \right)}}{2}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

                1. The integral of cosine is sine:

                  cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

              The result is: sin5(u)10sin3(u)3+sin(u)2\frac{\sin^{5}{\left(u \right)}}{10} - \frac{\sin^{3}{\left(u \right)}}{3} + \frac{\sin{\left(u \right)}}{2}

            Now substitute uu back in:

            sin5(2x)10sin3(2x)3+sin(2x)2\frac{\sin^{5}{\left(2 x \right)}}{10} - \frac{\sin^{3}{\left(2 x \right)}}{3} + \frac{\sin{\left(2 x \right)}}{2}

          So, the result is: sin5(2x)320+sin3(2x)96sin(2x)64- \frac{\sin^{5}{\left(2 x \right)}}{320} + \frac{\sin^{3}{\left(2 x \right)}}{96} - \frac{\sin{\left(2 x \right)}}{64}

        1. The integral of a constant times a function is the constant times the integral of the function:

          5cos4(2x)32dx=5cos4(2x)dx32\int \frac{5 \cos^{4}{\left(2 x \right)}}{32}\, dx = \frac{5 \int \cos^{4}{\left(2 x \right)}\, dx}{32}

          1. Rewrite the integrand:

            cos4(2x)=(cos(4x)2+12)2\cos^{4}{\left(2 x \right)} = \left(\frac{\cos{\left(4 x \right)}}{2} + \frac{1}{2}\right)^{2}

          2. Rewrite the integrand:

            (cos(4x)2+12)2=cos2(4x)4+cos(4x)2+14\left(\frac{\cos{\left(4 x \right)}}{2} + \frac{1}{2}\right)^{2} = \frac{\cos^{2}{\left(4 x \right)}}{4} + \frac{\cos{\left(4 x \right)}}{2} + \frac{1}{4}

          3. Integrate term-by-term:

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos2(4x)4dx=cos2(4x)dx4\int \frac{\cos^{2}{\left(4 x \right)}}{4}\, dx = \frac{\int \cos^{2}{\left(4 x \right)}\, dx}{4}

              1. Rewrite the integrand:

                cos2(4x)=cos(8x)2+12\cos^{2}{\left(4 x \right)} = \frac{\cos{\left(8 x \right)}}{2} + \frac{1}{2}

              2. Integrate term-by-term:

                1. The integral of a constant times a function is the constant times the integral of the function:

                  cos(8x)2dx=cos(8x)dx2\int \frac{\cos{\left(8 x \right)}}{2}\, dx = \frac{\int \cos{\left(8 x \right)}\, dx}{2}

                  1. Let u=8xu = 8 x.

                    Then let du=8dxdu = 8 dx and substitute du8\frac{du}{8}:

                    cos(u)64du\int \frac{\cos{\left(u \right)}}{64}\, du

                    1. The integral of a constant times a function is the constant times the integral of the function:

                      cos(u)8du=cos(u)du8\int \frac{\cos{\left(u \right)}}{8}\, du = \frac{\int \cos{\left(u \right)}\, du}{8}

                      1. The integral of cosine is sine:

                        cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                      So, the result is: sin(u)8\frac{\sin{\left(u \right)}}{8}

                    Now substitute uu back in:

                    sin(8x)8\frac{\sin{\left(8 x \right)}}{8}

                  So, the result is: sin(8x)16\frac{\sin{\left(8 x \right)}}{16}

                1. The integral of a constant is the constant times the variable of integration:

                  12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

                The result is: x2+sin(8x)16\frac{x}{2} + \frac{\sin{\left(8 x \right)}}{16}

              So, the result is: x8+sin(8x)64\frac{x}{8} + \frac{\sin{\left(8 x \right)}}{64}

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos(4x)2dx=cos(4x)dx2\int \frac{\cos{\left(4 x \right)}}{2}\, dx = \frac{\int \cos{\left(4 x \right)}\, dx}{2}

              1. Let u=4xu = 4 x.

                Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

                cos(u)16du\int \frac{\cos{\left(u \right)}}{16}\, du

                1. The integral of a constant times a function is the constant times the integral of the function:

                  cos(u)4du=cos(u)du4\int \frac{\cos{\left(u \right)}}{4}\, du = \frac{\int \cos{\left(u \right)}\, du}{4}

                  1. The integral of cosine is sine:

                    cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                  So, the result is: sin(u)4\frac{\sin{\left(u \right)}}{4}

                Now substitute uu back in:

                sin(4x)4\frac{\sin{\left(4 x \right)}}{4}

              So, the result is: sin(4x)8\frac{\sin{\left(4 x \right)}}{8}

            1. The integral of a constant is the constant times the variable of integration:

              14dx=x4\int \frac{1}{4}\, dx = \frac{x}{4}

            The result is: 3x8+sin(4x)8+sin(8x)64\frac{3 x}{8} + \frac{\sin{\left(4 x \right)}}{8} + \frac{\sin{\left(8 x \right)}}{64}

          So, the result is: 15x256+5sin(4x)256+5sin(8x)2048\frac{15 x}{256} + \frac{5 \sin{\left(4 x \right)}}{256} + \frac{5 \sin{\left(8 x \right)}}{2048}

        1. The integral of a constant times a function is the constant times the integral of the function:

          (5cos3(2x)16)dx=5cos3(2x)dx16\int \left(- \frac{5 \cos^{3}{\left(2 x \right)}}{16}\right)\, dx = - \frac{5 \int \cos^{3}{\left(2 x \right)}\, dx}{16}

          1. Rewrite the integrand:

            cos3(2x)=(1sin2(2x))cos(2x)\cos^{3}{\left(2 x \right)} = \left(1 - \sin^{2}{\left(2 x \right)}\right) \cos{\left(2 x \right)}

          2. Let u=sin(2x)u = \sin{\left(2 x \right)}.

            Then let du=2cos(2x)dxdu = 2 \cos{\left(2 x \right)} dx and substitute dudu:

            (12u22)du\int \left(\frac{1}{2} - \frac{u^{2}}{2}\right)\, du

            1. Integrate term-by-term:

              1. The integral of a constant is the constant times the variable of integration:

                12du=u2\int \frac{1}{2}\, du = \frac{u}{2}

              1. The integral of a constant times a function is the constant times the integral of the function:

                (u22)du=u2du2\int \left(- \frac{u^{2}}{2}\right)\, du = - \frac{\int u^{2}\, du}{2}

                1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                  u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                So, the result is: u36- \frac{u^{3}}{6}

              The result is: u36+u2- \frac{u^{3}}{6} + \frac{u}{2}

            Now substitute uu back in:

            sin3(2x)6+sin(2x)2- \frac{\sin^{3}{\left(2 x \right)}}{6} + \frac{\sin{\left(2 x \right)}}{2}

          So, the result is: 5sin3(2x)965sin(2x)32\frac{5 \sin^{3}{\left(2 x \right)}}{96} - \frac{5 \sin{\left(2 x \right)}}{32}

        1. The integral of a constant times a function is the constant times the integral of the function:

          5cos2(2x)16dx=5cos2(2x)dx16\int \frac{5 \cos^{2}{\left(2 x \right)}}{16}\, dx = \frac{5 \int \cos^{2}{\left(2 x \right)}\, dx}{16}

          1. Rewrite the integrand:

            cos2(2x)=cos(4x)2+12\cos^{2}{\left(2 x \right)} = \frac{\cos{\left(4 x \right)}}{2} + \frac{1}{2}

          2. Integrate term-by-term:

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos(4x)2dx=cos(4x)dx2\int \frac{\cos{\left(4 x \right)}}{2}\, dx = \frac{\int \cos{\left(4 x \right)}\, dx}{2}

              1. Let u=4xu = 4 x.

                Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

                cos(u)16du\int \frac{\cos{\left(u \right)}}{16}\, du

                1. The integral of a constant times a function is the constant times the integral of the function:

                  cos(u)4du=cos(u)du4\int \frac{\cos{\left(u \right)}}{4}\, du = \frac{\int \cos{\left(u \right)}\, du}{4}

                  1. The integral of cosine is sine:

                    cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                  So, the result is: sin(u)4\frac{\sin{\left(u \right)}}{4}

                Now substitute uu back in:

                sin(4x)4\frac{\sin{\left(4 x \right)}}{4}

              So, the result is: sin(4x)8\frac{\sin{\left(4 x \right)}}{8}

            1. The integral of a constant is the constant times the variable of integration:

              12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

            The result is: x2+sin(4x)8\frac{x}{2} + \frac{\sin{\left(4 x \right)}}{8}

          So, the result is: 5x32+5sin(4x)128\frac{5 x}{32} + \frac{5 \sin{\left(4 x \right)}}{128}

        1. The integral of a constant times a function is the constant times the integral of the function:

          (5cos(2x)32)dx=5cos(2x)dx32\int \left(- \frac{5 \cos{\left(2 x \right)}}{32}\right)\, dx = - \frac{5 \int \cos{\left(2 x \right)}\, dx}{32}

          1. Let u=2xu = 2 x.

            Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

            cos(u)4du\int \frac{\cos{\left(u \right)}}{4}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos(u)2du=cos(u)du2\int \frac{\cos{\left(u \right)}}{2}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

              1. The integral of cosine is sine:

                cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

              So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

            Now substitute uu back in:

            sin(2x)2\frac{\sin{\left(2 x \right)}}{2}

          So, the result is: 5sin(2x)64- \frac{5 \sin{\left(2 x \right)}}{64}

        1. The integral of a constant is the constant times the variable of integration:

          132dx=x32\int \frac{1}{32}\, dx = \frac{x}{32}

        The result is: 63x256sin5(2x)320+sin3(2x)16sin(2x)4+15sin(4x)256+5sin(8x)2048\frac{63 x}{256} - \frac{\sin^{5}{\left(2 x \right)}}{320} + \frac{\sin^{3}{\left(2 x \right)}}{16} - \frac{\sin{\left(2 x \right)}}{4} + \frac{15 \sin{\left(4 x \right)}}{256} + \frac{5 \sin{\left(8 x \right)}}{2048}

      So, the result is: 756x48sin5(2x)5+192sin3(2x)768sin(2x)+180sin(4x)+15sin(8x)2756 x - \frac{48 \sin^{5}{\left(2 x \right)}}{5} + 192 \sin^{3}{\left(2 x \right)} - 768 \sin{\left(2 x \right)} + 180 \sin{\left(4 x \right)} + \frac{15 \sin{\left(8 x \right)}}{2}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (3456sin8(x))dx=3456sin8(x)dx\int \left(- 3456 \sin^{8}{\left(x \right)}\right)\, dx = - 3456 \int \sin^{8}{\left(x \right)}\, dx

      1. Rewrite the integrand:

        sin8(x)=(12cos(2x)2)4\sin^{8}{\left(x \right)} = \left(\frac{1}{2} - \frac{\cos{\left(2 x \right)}}{2}\right)^{4}

      2. Rewrite the integrand:

        (12cos(2x)2)4=cos4(2x)16cos3(2x)4+3cos2(2x)8cos(2x)4+116\left(\frac{1}{2} - \frac{\cos{\left(2 x \right)}}{2}\right)^{4} = \frac{\cos^{4}{\left(2 x \right)}}{16} - \frac{\cos^{3}{\left(2 x \right)}}{4} + \frac{3 \cos^{2}{\left(2 x \right)}}{8} - \frac{\cos{\left(2 x \right)}}{4} + \frac{1}{16}

      3. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          cos4(2x)16dx=cos4(2x)dx16\int \frac{\cos^{4}{\left(2 x \right)}}{16}\, dx = \frac{\int \cos^{4}{\left(2 x \right)}\, dx}{16}

          1. Rewrite the integrand:

            cos4(2x)=(cos(4x)2+12)2\cos^{4}{\left(2 x \right)} = \left(\frac{\cos{\left(4 x \right)}}{2} + \frac{1}{2}\right)^{2}

          2. Rewrite the integrand:

            (cos(4x)2+12)2=cos2(4x)4+cos(4x)2+14\left(\frac{\cos{\left(4 x \right)}}{2} + \frac{1}{2}\right)^{2} = \frac{\cos^{2}{\left(4 x \right)}}{4} + \frac{\cos{\left(4 x \right)}}{2} + \frac{1}{4}

          3. Integrate term-by-term:

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos2(4x)4dx=cos2(4x)dx4\int \frac{\cos^{2}{\left(4 x \right)}}{4}\, dx = \frac{\int \cos^{2}{\left(4 x \right)}\, dx}{4}

              1. Rewrite the integrand:

                cos2(4x)=cos(8x)2+12\cos^{2}{\left(4 x \right)} = \frac{\cos{\left(8 x \right)}}{2} + \frac{1}{2}

              2. Integrate term-by-term:

                1. The integral of a constant times a function is the constant times the integral of the function:

                  cos(8x)2dx=cos(8x)dx2\int \frac{\cos{\left(8 x \right)}}{2}\, dx = \frac{\int \cos{\left(8 x \right)}\, dx}{2}

                  1. Let u=8xu = 8 x.

                    Then let du=8dxdu = 8 dx and substitute du8\frac{du}{8}:

                    cos(u)64du\int \frac{\cos{\left(u \right)}}{64}\, du

                    1. The integral of a constant times a function is the constant times the integral of the function:

                      cos(u)8du=cos(u)du8\int \frac{\cos{\left(u \right)}}{8}\, du = \frac{\int \cos{\left(u \right)}\, du}{8}

                      1. The integral of cosine is sine:

                        cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                      So, the result is: sin(u)8\frac{\sin{\left(u \right)}}{8}

                    Now substitute uu back in:

                    sin(8x)8\frac{\sin{\left(8 x \right)}}{8}

                  So, the result is: sin(8x)16\frac{\sin{\left(8 x \right)}}{16}

                1. The integral of a constant is the constant times the variable of integration:

                  12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

                The result is: x2+sin(8x)16\frac{x}{2} + \frac{\sin{\left(8 x \right)}}{16}

              So, the result is: x8+sin(8x)64\frac{x}{8} + \frac{\sin{\left(8 x \right)}}{64}

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos(4x)2dx=cos(4x)dx2\int \frac{\cos{\left(4 x \right)}}{2}\, dx = \frac{\int \cos{\left(4 x \right)}\, dx}{2}

              1. Let u=4xu = 4 x.

                Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

                cos(u)16du\int \frac{\cos{\left(u \right)}}{16}\, du

                1. The integral of a constant times a function is the constant times the integral of the function:

                  cos(u)4du=cos(u)du4\int \frac{\cos{\left(u \right)}}{4}\, du = \frac{\int \cos{\left(u \right)}\, du}{4}

                  1. The integral of cosine is sine:

                    cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                  So, the result is: sin(u)4\frac{\sin{\left(u \right)}}{4}

                Now substitute uu back in:

                sin(4x)4\frac{\sin{\left(4 x \right)}}{4}

              So, the result is: sin(4x)8\frac{\sin{\left(4 x \right)}}{8}

            1. The integral of a constant is the constant times the variable of integration:

              14dx=x4\int \frac{1}{4}\, dx = \frac{x}{4}

            The result is: 3x8+sin(4x)8+sin(8x)64\frac{3 x}{8} + \frac{\sin{\left(4 x \right)}}{8} + \frac{\sin{\left(8 x \right)}}{64}

          So, the result is: 3x128+sin(4x)128+sin(8x)1024\frac{3 x}{128} + \frac{\sin{\left(4 x \right)}}{128} + \frac{\sin{\left(8 x \right)}}{1024}

        1. The integral of a constant times a function is the constant times the integral of the function:

          (cos3(2x)4)dx=cos3(2x)dx4\int \left(- \frac{\cos^{3}{\left(2 x \right)}}{4}\right)\, dx = - \frac{\int \cos^{3}{\left(2 x \right)}\, dx}{4}

          1. Rewrite the integrand:

            cos3(2x)=(1sin2(2x))cos(2x)\cos^{3}{\left(2 x \right)} = \left(1 - \sin^{2}{\left(2 x \right)}\right) \cos{\left(2 x \right)}

          2. Let u=sin(2x)u = \sin{\left(2 x \right)}.

            Then let du=2cos(2x)dxdu = 2 \cos{\left(2 x \right)} dx and substitute dudu:

            (12u22)du\int \left(\frac{1}{2} - \frac{u^{2}}{2}\right)\, du

            1. Integrate term-by-term:

              1. The integral of a constant is the constant times the variable of integration:

                12du=u2\int \frac{1}{2}\, du = \frac{u}{2}

              1. The integral of a constant times a function is the constant times the integral of the function:

                (u22)du=u2du2\int \left(- \frac{u^{2}}{2}\right)\, du = - \frac{\int u^{2}\, du}{2}

                1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                  u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                So, the result is: u36- \frac{u^{3}}{6}

              The result is: u36+u2- \frac{u^{3}}{6} + \frac{u}{2}

            Now substitute uu back in:

            sin3(2x)6+sin(2x)2- \frac{\sin^{3}{\left(2 x \right)}}{6} + \frac{\sin{\left(2 x \right)}}{2}

          So, the result is: sin3(2x)24sin(2x)8\frac{\sin^{3}{\left(2 x \right)}}{24} - \frac{\sin{\left(2 x \right)}}{8}

        1. The integral of a constant times a function is the constant times the integral of the function:

          3cos2(2x)8dx=3cos2(2x)dx8\int \frac{3 \cos^{2}{\left(2 x \right)}}{8}\, dx = \frac{3 \int \cos^{2}{\left(2 x \right)}\, dx}{8}

          1. Rewrite the integrand:

            cos2(2x)=cos(4x)2+12\cos^{2}{\left(2 x \right)} = \frac{\cos{\left(4 x \right)}}{2} + \frac{1}{2}

          2. Integrate term-by-term:

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos(4x)2dx=cos(4x)dx2\int \frac{\cos{\left(4 x \right)}}{2}\, dx = \frac{\int \cos{\left(4 x \right)}\, dx}{2}

              1. Let u=4xu = 4 x.

                Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

                cos(u)16du\int \frac{\cos{\left(u \right)}}{16}\, du

                1. The integral of a constant times a function is the constant times the integral of the function:

                  cos(u)4du=cos(u)du4\int \frac{\cos{\left(u \right)}}{4}\, du = \frac{\int \cos{\left(u \right)}\, du}{4}

                  1. The integral of cosine is sine:

                    cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                  So, the result is: sin(u)4\frac{\sin{\left(u \right)}}{4}

                Now substitute uu back in:

                sin(4x)4\frac{\sin{\left(4 x \right)}}{4}

              So, the result is: sin(4x)8\frac{\sin{\left(4 x \right)}}{8}

            1. The integral of a constant is the constant times the variable of integration:

              12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

            The result is: x2+sin(4x)8\frac{x}{2} + \frac{\sin{\left(4 x \right)}}{8}

          So, the result is: 3x16+3sin(4x)64\frac{3 x}{16} + \frac{3 \sin{\left(4 x \right)}}{64}

        1. The integral of a constant times a function is the constant times the integral of the function:

          (cos(2x)4)dx=cos(2x)dx4\int \left(- \frac{\cos{\left(2 x \right)}}{4}\right)\, dx = - \frac{\int \cos{\left(2 x \right)}\, dx}{4}

          1. Let u=2xu = 2 x.

            Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

            cos(u)4du\int \frac{\cos{\left(u \right)}}{4}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos(u)2du=cos(u)du2\int \frac{\cos{\left(u \right)}}{2}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

              1. The integral of cosine is sine:

                cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

              So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

            Now substitute uu back in:

            sin(2x)2\frac{\sin{\left(2 x \right)}}{2}

          So, the result is: sin(2x)8- \frac{\sin{\left(2 x \right)}}{8}

        1. The integral of a constant is the constant times the variable of integration:

          116dx=x16\int \frac{1}{16}\, dx = \frac{x}{16}

        The result is: 35x128+sin3(2x)24sin(2x)4+7sin(4x)128+sin(8x)1024\frac{35 x}{128} + \frac{\sin^{3}{\left(2 x \right)}}{24} - \frac{\sin{\left(2 x \right)}}{4} + \frac{7 \sin{\left(4 x \right)}}{128} + \frac{\sin{\left(8 x \right)}}{1024}

      So, the result is: 945x144sin3(2x)+864sin(2x)189sin(4x)27sin(8x)8- 945 x - 144 \sin^{3}{\left(2 x \right)} + 864 \sin{\left(2 x \right)} - 189 \sin{\left(4 x \right)} - \frac{27 \sin{\left(8 x \right)}}{8}

    1. The integral of a constant times a function is the constant times the integral of the function:

      1792sin6(x)dx=1792sin6(x)dx\int 1792 \sin^{6}{\left(x \right)}\, dx = 1792 \int \sin^{6}{\left(x \right)}\, dx

      1. Rewrite the integrand:

        sin6(x)=(12cos(2x)2)3\sin^{6}{\left(x \right)} = \left(\frac{1}{2} - \frac{\cos{\left(2 x \right)}}{2}\right)^{3}

      2. Rewrite the integrand:

        (12cos(2x)2)3=cos3(2x)8+3cos2(2x)83cos(2x)8+18\left(\frac{1}{2} - \frac{\cos{\left(2 x \right)}}{2}\right)^{3} = - \frac{\cos^{3}{\left(2 x \right)}}{8} + \frac{3 \cos^{2}{\left(2 x \right)}}{8} - \frac{3 \cos{\left(2 x \right)}}{8} + \frac{1}{8}

      3. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          (cos3(2x)8)dx=cos3(2x)dx8\int \left(- \frac{\cos^{3}{\left(2 x \right)}}{8}\right)\, dx = - \frac{\int \cos^{3}{\left(2 x \right)}\, dx}{8}

          1. Rewrite the integrand:

            cos3(2x)=(1sin2(2x))cos(2x)\cos^{3}{\left(2 x \right)} = \left(1 - \sin^{2}{\left(2 x \right)}\right) \cos{\left(2 x \right)}

          2. Let u=sin(2x)u = \sin{\left(2 x \right)}.

            Then let du=2cos(2x)dxdu = 2 \cos{\left(2 x \right)} dx and substitute dudu:

            (12u22)du\int \left(\frac{1}{2} - \frac{u^{2}}{2}\right)\, du

            1. Integrate term-by-term:

              1. The integral of a constant is the constant times the variable of integration:

                12du=u2\int \frac{1}{2}\, du = \frac{u}{2}

              1. The integral of a constant times a function is the constant times the integral of the function:

                (u22)du=u2du2\int \left(- \frac{u^{2}}{2}\right)\, du = - \frac{\int u^{2}\, du}{2}

                1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                  u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                So, the result is: u36- \frac{u^{3}}{6}

              The result is: u36+u2- \frac{u^{3}}{6} + \frac{u}{2}

            Now substitute uu back in:

            sin3(2x)6+sin(2x)2- \frac{\sin^{3}{\left(2 x \right)}}{6} + \frac{\sin{\left(2 x \right)}}{2}

          So, the result is: sin3(2x)48sin(2x)16\frac{\sin^{3}{\left(2 x \right)}}{48} - \frac{\sin{\left(2 x \right)}}{16}

        1. The integral of a constant times a function is the constant times the integral of the function:

          3cos2(2x)8dx=3cos2(2x)dx8\int \frac{3 \cos^{2}{\left(2 x \right)}}{8}\, dx = \frac{3 \int \cos^{2}{\left(2 x \right)}\, dx}{8}

          1. Rewrite the integrand:

            cos2(2x)=cos(4x)2+12\cos^{2}{\left(2 x \right)} = \frac{\cos{\left(4 x \right)}}{2} + \frac{1}{2}

          2. Integrate term-by-term:

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos(4x)2dx=cos(4x)dx2\int \frac{\cos{\left(4 x \right)}}{2}\, dx = \frac{\int \cos{\left(4 x \right)}\, dx}{2}

              1. Let u=4xu = 4 x.

                Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

                cos(u)16du\int \frac{\cos{\left(u \right)}}{16}\, du

                1. The integral of a constant times a function is the constant times the integral of the function:

                  cos(u)4du=cos(u)du4\int \frac{\cos{\left(u \right)}}{4}\, du = \frac{\int \cos{\left(u \right)}\, du}{4}

                  1. The integral of cosine is sine:

                    cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                  So, the result is: sin(u)4\frac{\sin{\left(u \right)}}{4}

                Now substitute uu back in:

                sin(4x)4\frac{\sin{\left(4 x \right)}}{4}

              So, the result is: sin(4x)8\frac{\sin{\left(4 x \right)}}{8}

            1. The integral of a constant is the constant times the variable of integration:

              12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

            The result is: x2+sin(4x)8\frac{x}{2} + \frac{\sin{\left(4 x \right)}}{8}

          So, the result is: 3x16+3sin(4x)64\frac{3 x}{16} + \frac{3 \sin{\left(4 x \right)}}{64}

        1. The integral of a constant times a function is the constant times the integral of the function:

          (3cos(2x)8)dx=3cos(2x)dx8\int \left(- \frac{3 \cos{\left(2 x \right)}}{8}\right)\, dx = - \frac{3 \int \cos{\left(2 x \right)}\, dx}{8}

          1. Let u=2xu = 2 x.

            Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

            cos(u)4du\int \frac{\cos{\left(u \right)}}{4}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos(u)2du=cos(u)du2\int \frac{\cos{\left(u \right)}}{2}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

              1. The integral of cosine is sine:

                cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

              So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

            Now substitute uu back in:

            sin(2x)2\frac{\sin{\left(2 x \right)}}{2}

          So, the result is: 3sin(2x)16- \frac{3 \sin{\left(2 x \right)}}{16}

        1. The integral of a constant is the constant times the variable of integration:

          18dx=x8\int \frac{1}{8}\, dx = \frac{x}{8}

        The result is: 5x16+sin3(2x)48sin(2x)4+3sin(4x)64\frac{5 x}{16} + \frac{\sin^{3}{\left(2 x \right)}}{48} - \frac{\sin{\left(2 x \right)}}{4} + \frac{3 \sin{\left(4 x \right)}}{64}

      So, the result is: 560x+112sin3(2x)3448sin(2x)+84sin(4x)560 x + \frac{112 \sin^{3}{\left(2 x \right)}}{3} - 448 \sin{\left(2 x \right)} + 84 \sin{\left(4 x \right)}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (420sin4(x))dx=420sin4(x)dx\int \left(- 420 \sin^{4}{\left(x \right)}\right)\, dx = - 420 \int \sin^{4}{\left(x \right)}\, dx

      1. Rewrite the integrand:

        sin4(x)=(12cos(2x)2)2\sin^{4}{\left(x \right)} = \left(\frac{1}{2} - \frac{\cos{\left(2 x \right)}}{2}\right)^{2}

      2. Rewrite the integrand:

        (12cos(2x)2)2=cos2(2x)4cos(2x)2+14\left(\frac{1}{2} - \frac{\cos{\left(2 x \right)}}{2}\right)^{2} = \frac{\cos^{2}{\left(2 x \right)}}{4} - \frac{\cos{\left(2 x \right)}}{2} + \frac{1}{4}

      3. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          cos2(2x)4dx=cos2(2x)dx4\int \frac{\cos^{2}{\left(2 x \right)}}{4}\, dx = \frac{\int \cos^{2}{\left(2 x \right)}\, dx}{4}

          1. Rewrite the integrand:

            cos2(2x)=cos(4x)2+12\cos^{2}{\left(2 x \right)} = \frac{\cos{\left(4 x \right)}}{2} + \frac{1}{2}

          2. Integrate term-by-term:

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos(4x)2dx=cos(4x)dx2\int \frac{\cos{\left(4 x \right)}}{2}\, dx = \frac{\int \cos{\left(4 x \right)}\, dx}{2}

              1. Let u=4xu = 4 x.

                Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

                cos(u)16du\int \frac{\cos{\left(u \right)}}{16}\, du

                1. The integral of a constant times a function is the constant times the integral of the function:

                  cos(u)4du=cos(u)du4\int \frac{\cos{\left(u \right)}}{4}\, du = \frac{\int \cos{\left(u \right)}\, du}{4}

                  1. The integral of cosine is sine:

                    cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                  So, the result is: sin(u)4\frac{\sin{\left(u \right)}}{4}

                Now substitute uu back in:

                sin(4x)4\frac{\sin{\left(4 x \right)}}{4}

              So, the result is: sin(4x)8\frac{\sin{\left(4 x \right)}}{8}

            1. The integral of a constant is the constant times the variable of integration:

              12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

            The result is: x2+sin(4x)8\frac{x}{2} + \frac{\sin{\left(4 x \right)}}{8}

          So, the result is: x8+sin(4x)32\frac{x}{8} + \frac{\sin{\left(4 x \right)}}{32}

        1. The integral of a constant times a function is the constant times the integral of the function:

          (cos(2x)2)dx=cos(2x)dx2\int \left(- \frac{\cos{\left(2 x \right)}}{2}\right)\, dx = - \frac{\int \cos{\left(2 x \right)}\, dx}{2}

          1. Let u=2xu = 2 x.

            Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

            cos(u)4du\int \frac{\cos{\left(u \right)}}{4}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos(u)2du=cos(u)du2\int \frac{\cos{\left(u \right)}}{2}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

              1. The integral of cosine is sine:

                cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

              So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

            Now substitute uu back in:

            sin(2x)2\frac{\sin{\left(2 x \right)}}{2}

          So, the result is: sin(2x)4- \frac{\sin{\left(2 x \right)}}{4}

        1. The integral of a constant is the constant times the variable of integration:

          14dx=x4\int \frac{1}{4}\, dx = \frac{x}{4}

        The result is: 3x8sin(2x)4+sin(4x)32\frac{3 x}{8} - \frac{\sin{\left(2 x \right)}}{4} + \frac{\sin{\left(4 x \right)}}{32}

      So, the result is: 315x2+105sin(2x)105sin(4x)8- \frac{315 x}{2} + 105 \sin{\left(2 x \right)} - \frac{105 \sin{\left(4 x \right)}}{8}

    1. The integral of a constant times a function is the constant times the integral of the function:

      35sin2(x)dx=35sin2(x)dx\int 35 \sin^{2}{\left(x \right)}\, dx = 35 \int \sin^{2}{\left(x \right)}\, dx

      1. Rewrite the integrand:

        sin2(x)=12cos(2x)2\sin^{2}{\left(x \right)} = \frac{1}{2} - \frac{\cos{\left(2 x \right)}}{2}

      2. Integrate term-by-term:

        1. The integral of a constant is the constant times the variable of integration:

          12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

        1. The integral of a constant times a function is the constant times the integral of the function:

          (cos(2x)2)dx=cos(2x)dx2\int \left(- \frac{\cos{\left(2 x \right)}}{2}\right)\, dx = - \frac{\int \cos{\left(2 x \right)}\, dx}{2}

          1. Let u=2xu = 2 x.

            Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

            cos(u)4du\int \frac{\cos{\left(u \right)}}{4}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos(u)2du=cos(u)du2\int \frac{\cos{\left(u \right)}}{2}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

              1. The integral of cosine is sine:

                cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

              So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

            Now substitute uu back in:

            sin(2x)2\frac{\sin{\left(2 x \right)}}{2}

          So, the result is: sin(2x)4- \frac{\sin{\left(2 x \right)}}{4}

        The result is: x2sin(2x)4\frac{x}{2} - \frac{\sin{\left(2 x \right)}}{4}

      So, the result is: 35x235sin(2x)4\frac{35 x}{2} - \frac{35 \sin{\left(2 x \right)}}{4}

    The result is: sin(2x)4+sin3(4x)6sin(4x)8\frac{\sin{\left(2 x \right)}}{4} + \frac{\sin^{3}{\left(4 x \right)}}{6} - \frac{\sin{\left(4 x \right)}}{8}

  3. Add the constant of integration:

    sin(2x)4+sin3(4x)6sin(4x)8+constant\frac{\sin{\left(2 x \right)}}{4} + \frac{\sin^{3}{\left(4 x \right)}}{6} - \frac{\sin{\left(4 x \right)}}{8}+ \mathrm{constant}


The answer is:

sin(2x)4+sin3(4x)6sin(4x)8+constant\frac{\sin{\left(2 x \right)}}{4} + \frac{\sin^{3}{\left(4 x \right)}}{6} - \frac{\sin{\left(4 x \right)}}{8}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                    3     
 |                            sin(4*x)   sin(2*x)   sin (4*x)
 | sin(5*x)*sin(7*x) dx = C - -------- + -------- + ---------
 |                               8          4           6    
/                                                            
sin(2x)4sin(12x)24{{\sin \left(2\,x\right)}\over{4}}-{{\sin \left(12\,x\right)}\over{ 24}}
The answer [src]
  7*cos(7)*sin(5)   5*cos(5)*sin(7)
- --------------- + ---------------
         24                24      
sin126sin224-{{\sin 12-6\,\sin 2}\over{24}}
=
=
  7*cos(7)*sin(5)   5*cos(5)*sin(7)
- --------------- + ---------------
         24                24      
5sin(7)cos(5)247sin(5)cos(7)24\frac{5 \sin{\left(7 \right)} \cos{\left(5 \right)}}{24} - \frac{7 \sin{\left(5 \right)} \cos{\left(7 \right)}}{24}
Numerical answer [src]
0.249681561623105
0.249681561623105

    Use the examples entering the upper and lower limits of integration.