Mister Exam

Other calculators

Integral of sqrt(2)*cos(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  m                
  /                
 |                 
 |    ___          
 |  \/ 2 *cos(x) dx
 |                 
/                  
0                  
0m2cos(x)dx\int\limits_{0}^{m} \sqrt{2} \cos{\left(x \right)}\, dx
Integral(sqrt(2)*cos(x), (x, 0, m))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    2cos(x)dx=2cos(x)dx\int \sqrt{2} \cos{\left(x \right)}\, dx = \sqrt{2} \int \cos{\left(x \right)}\, dx

    1. The integral of cosine is sine:

      cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

    So, the result is: 2sin(x)\sqrt{2} \sin{\left(x \right)}

  2. Add the constant of integration:

    2sin(x)+constant\sqrt{2} \sin{\left(x \right)}+ \mathrm{constant}


The answer is:

2sin(x)+constant\sqrt{2} \sin{\left(x \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                  
 |                                   
 |   ___                   ___       
 | \/ 2 *cos(x) dx = C + \/ 2 *sin(x)
 |                                   
/                                    
2cos(x)dx=C+2sin(x)\int \sqrt{2} \cos{\left(x \right)}\, dx = C + \sqrt{2} \sin{\left(x \right)}
The answer [src]
  ___       
\/ 2 *sin(m)
2sin(m)\sqrt{2} \sin{\left(m \right)}
=
=
  ___       
\/ 2 *sin(m)
2sin(m)\sqrt{2} \sin{\left(m \right)}
sqrt(2)*sin(m)

    Use the examples entering the upper and lower limits of integration.