Mister Exam

Other calculators

Integral of x^2*sqrt(2)cos(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi                   
 --                   
 4                    
  /                   
 |                    
 |   2   ___          
 |  x *\/ 2 *cos(x) dx
 |                    
/                     
0                     
0π42x2cos(x)dx\int\limits_{0}^{\frac{\pi}{4}} \sqrt{2} x^{2} \cos{\left(x \right)}\, dx
Integral((x^2*sqrt(2))*cos(x), (x, 0, pi/4))
Detail solution
  1. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=2x2u{\left(x \right)} = \sqrt{2} x^{2} and let dv(x)=cos(x)\operatorname{dv}{\left(x \right)} = \cos{\left(x \right)}.

    Then du(x)=22x\operatorname{du}{\left(x \right)} = 2 \sqrt{2} x.

    To find v(x)v{\left(x \right)}:

    1. The integral of cosine is sine:

      cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

    Now evaluate the sub-integral.

  2. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=22xu{\left(x \right)} = 2 \sqrt{2} x and let dv(x)=sin(x)\operatorname{dv}{\left(x \right)} = \sin{\left(x \right)}.

    Then du(x)=22\operatorname{du}{\left(x \right)} = 2 \sqrt{2}.

    To find v(x)v{\left(x \right)}:

    1. The integral of sine is negative cosine:

      sin(x)dx=cos(x)\int \sin{\left(x \right)}\, dx = - \cos{\left(x \right)}

    Now evaluate the sub-integral.

  3. The integral of a constant times a function is the constant times the integral of the function:

    (22cos(x))dx=22cos(x)dx\int \left(- 2 \sqrt{2} \cos{\left(x \right)}\right)\, dx = - 2 \sqrt{2} \int \cos{\left(x \right)}\, dx

    1. The integral of cosine is sine:

      cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

    So, the result is: 22sin(x)- 2 \sqrt{2} \sin{\left(x \right)}

  4. Now simplify:

    2(x2sin(x)+2xcos(x)2sin(x))\sqrt{2} \left(x^{2} \sin{\left(x \right)} + 2 x \cos{\left(x \right)} - 2 \sin{\left(x \right)}\right)

  5. Add the constant of integration:

    2(x2sin(x)+2xcos(x)2sin(x))+constant\sqrt{2} \left(x^{2} \sin{\left(x \right)} + 2 x \cos{\left(x \right)} - 2 \sin{\left(x \right)}\right)+ \mathrm{constant}


The answer is:

2(x2sin(x)+2xcos(x)2sin(x))+constant\sqrt{2} \left(x^{2} \sin{\left(x \right)} + 2 x \cos{\left(x \right)} - 2 \sin{\left(x \right)}\right)+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                                            
 |                                                                             
 |  2   ___                     ___            ___  2                ___       
 | x *\/ 2 *cos(x) dx = C - 2*\/ 2 *sin(x) + \/ 2 *x *sin(x) + 2*x*\/ 2 *cos(x)
 |                                                                             
/                                                                              
2x2cos(x)dx=C+2x2sin(x)+22xcos(x)22sin(x)\int \sqrt{2} x^{2} \cos{\left(x \right)}\, dx = C + \sqrt{2} x^{2} \sin{\left(x \right)} + 2 \sqrt{2} x \cos{\left(x \right)} - 2 \sqrt{2} \sin{\left(x \right)}
The graph
0.000.050.100.150.200.250.300.350.400.450.500.550.600.650.700.750.01.0
The answer [src]
      /               ___     ___   2\
  ___ |    ___   pi*\/ 2    \/ 2 *pi |
\/ 2 *|- \/ 2  + -------- + ---------|
      \             4           32   /
2(2+2π232+2π4)\sqrt{2} \left(- \sqrt{2} + \frac{\sqrt{2} \pi^{2}}{32} + \frac{\sqrt{2} \pi}{4}\right)
=
=
      /               ___     ___   2\
  ___ |    ___   pi*\/ 2    \/ 2 *pi |
\/ 2 *|- \/ 2  + -------- + ---------|
      \             4           32   /
2(2+2π232+2π4)\sqrt{2} \left(- \sqrt{2} + \frac{\sqrt{2} \pi^{2}}{32} + \frac{\sqrt{2} \pi}{4}\right)
sqrt(2)*(-sqrt(2) + pi*sqrt(2)/4 + sqrt(2)*pi^2/32)
Numerical answer [src]
0.187646601862982
0.187646601862982

    Use the examples entering the upper and lower limits of integration.