Integral of x^2*sqrt(2)cos(x) dx
The solution
Detail solution
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=2x2 and let dv(x)=cos(x).
Then du(x)=22x.
To find v(x):
-
The integral of cosine is sine:
∫cos(x)dx=sin(x)
Now evaluate the sub-integral.
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=22x and let dv(x)=sin(x).
Then du(x)=22.
To find v(x):
-
The integral of sine is negative cosine:
∫sin(x)dx=−cos(x)
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−22cos(x))dx=−22∫cos(x)dx
-
The integral of cosine is sine:
∫cos(x)dx=sin(x)
So, the result is: −22sin(x)
-
Now simplify:
2(x2sin(x)+2xcos(x)−2sin(x))
-
Add the constant of integration:
2(x2sin(x)+2xcos(x)−2sin(x))+constant
The answer is:
2(x2sin(x)+2xcos(x)−2sin(x))+constant
The answer (Indefinite)
[src]
/
|
| 2 ___ ___ ___ 2 ___
| x *\/ 2 *cos(x) dx = C - 2*\/ 2 *sin(x) + \/ 2 *x *sin(x) + 2*x*\/ 2 *cos(x)
|
/
∫2x2cos(x)dx=C+2x2sin(x)+22xcos(x)−22sin(x)
The graph
/ ___ ___ 2\
___ | ___ pi*\/ 2 \/ 2 *pi |
\/ 2 *|- \/ 2 + -------- + ---------|
\ 4 32 /
2(−2+322π2+42π)
=
/ ___ ___ 2\
___ | ___ pi*\/ 2 \/ 2 *pi |
\/ 2 *|- \/ 2 + -------- + ---------|
\ 4 32 /
2(−2+322π2+42π)
sqrt(2)*(-sqrt(2) + pi*sqrt(2)/4 + sqrt(2)*pi^2/32)
Use the examples entering the upper and lower limits of integration.