Mister Exam

Other calculators


sqrt(2-2e^(2x))

Integral of sqrt(2-2e^(2x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     0                     
     /                     
    |                      
    |       ____________   
    |      /        2*x    
    |    \/  2 - 2*e     dx
    |                      
   /                       
-log(2)                    
--------                   
   2                       
$$\int\limits_{- \frac{\log{\left(2 \right)}}{2}}^{0} \sqrt{2 - 2 e^{2 x}}\, dx$$
Integral(sqrt(2 - 2*E^(2*x)), (x, -log(2)/2, 0))
The answer (Indefinite) [src]
  /                                                                                                 
 |                                /                   /        __________\      /       __________\\
 |    ____________                |   __________      |       /      2*x |      |      /      2*x ||
 |   /        2*x             ___ |  /      2*x    log\-1 + \/  1 - e    /   log\1 + \/  1 - e    /|
 | \/  2 - 2*e     dx = C + \/ 2 *|\/  1 - e     + ----------------------- - ----------------------|
 |                                \                           2                        2           /
/                                                                                                   
$$\int \sqrt{2 - 2 e^{2 x}}\, dx = C + \sqrt{2} \left(\sqrt{1 - e^{2 x}} + \frac{\log{\left(\sqrt{1 - e^{2 x}} - 1 \right)}}{2} - \frac{\log{\left(\sqrt{1 - e^{2 x}} + 1 \right)}}{2}\right)$$
The graph
The answer [src]
        /           /      ___\             /      ___\\             
    ___ |  ___      |    \/ 2 |             |    \/ 2 ||             
  \/ 2 *|\/ 2  - log|1 + -----| + pi*I + log|1 - -----||          ___
        \           \      2  /             \      2  //   pi*I*\/ 2 
- ------------------------------------------------------ + ----------
                            2                                  2     
$$- \frac{\sqrt{2} \left(\log{\left(1 - \frac{\sqrt{2}}{2} \right)} - \log{\left(\frac{\sqrt{2}}{2} + 1 \right)} + \sqrt{2} + i \pi\right)}{2} + \frac{\sqrt{2} i \pi}{2}$$
=
=
        /           /      ___\             /      ___\\             
    ___ |  ___      |    \/ 2 |             |    \/ 2 ||             
  \/ 2 *|\/ 2  - log|1 + -----| + pi*I + log|1 - -----||          ___
        \           \      2  /             \      2  //   pi*I*\/ 2 
- ------------------------------------------------------ + ----------
                            2                                  2     
$$- \frac{\sqrt{2} \left(\log{\left(1 - \frac{\sqrt{2}}{2} \right)} - \log{\left(\frac{\sqrt{2}}{2} + 1 \right)} + \sqrt{2} + i \pi\right)}{2} + \frac{\sqrt{2} i \pi}{2}$$
Numerical answer [src]
0.246450480280461
0.246450480280461
The graph
Integral of sqrt(2-2e^(2x)) dx

    Use the examples entering the upper and lower limits of integration.