___
2*\/ 3
/
|
| _________
| / 2
| \/ 12 - x dx
|
/
0
Integral(sqrt(12 - x^2), (x, 0, 2*sqrt(3)))
TrigSubstitutionRule(theta=_theta, func=2*sqrt(3)*sin(_theta), rewritten=12*cos(_theta)**2, substep=ConstantTimesRule(constant=12, other=cos(_theta)**2, substep=RewriteRule(rewritten=cos(2*_theta)/2 + 1/2, substep=AddRule(substeps=[ConstantTimesRule(constant=1/2, other=cos(2*_theta), substep=URule(u_var=_u, u_func=2*_theta, constant=1/2, substep=ConstantTimesRule(constant=1/2, other=cos(_u), substep=TrigRule(func='cos', arg=_u, context=cos(_u), symbol=_u), context=cos(_u), symbol=_u), context=cos(2*_theta), symbol=_theta), context=cos(2*_theta)/2, symbol=_theta), ConstantRule(constant=1/2, context=1/2, symbol=_theta)], context=cos(2*_theta)/2 + 1/2, symbol=_theta), context=cos(_theta)**2, symbol=_theta), context=12*cos(_theta)**2, symbol=_theta), restriction=(x > -2*sqrt(3)) & (x < 2*sqrt(3)), context=sqrt(12 - x**2), symbol=x)
Add the constant of integration:
The answer is:
/ | | _________ // _________ \ | / 2 || / ___\ / 2 | | \/ 12 - x dx = C + |< |x*\/ 3 | x*\/ 12 - x / ___ ___\| | ||6*asin|-------| + -------------- for And\x > -2*\/ 3 , x < 2*\/ 3 /| / \\ \ 6 / 2 /
Use the examples entering the upper and lower limits of integration.