1 / | | ________ | / 2 | \/ 3 - x dx | / 0
Integral(sqrt(3 - x^2), (x, 0, 1))
TrigSubstitutionRule(theta=_theta, func=sqrt(3)*sin(_theta), rewritten=3*cos(_theta)**2, substep=ConstantTimesRule(constant=3, other=cos(_theta)**2, substep=RewriteRule(rewritten=cos(2*_theta)/2 + 1/2, substep=AddRule(substeps=[ConstantTimesRule(constant=1/2, other=cos(2*_theta), substep=URule(u_var=_u, u_func=2*_theta, constant=1/2, substep=ConstantTimesRule(constant=1/2, other=cos(_u), substep=TrigRule(func='cos', arg=_u, context=cos(_u), symbol=_u), context=cos(_u), symbol=_u), context=cos(2*_theta), symbol=_theta), context=cos(2*_theta)/2, symbol=_theta), ConstantRule(constant=1/2, context=1/2, symbol=_theta)], context=cos(2*_theta)/2 + 1/2, symbol=_theta), context=cos(_theta)**2, symbol=_theta), context=3*cos(_theta)**2, symbol=_theta), restriction=(x < sqrt(3)) & (x > -sqrt(3)), context=sqrt(3 - x**2), symbol=x)
Add the constant of integration:
The answer is:
/ | // / ___\ \ | ________ || |x*\/ 3 | ________ | | / 2 ||3*asin|-------| / 2 | | \/ 3 - x dx = C + |< \ 3 / x*\/ 3 - x / ___ ___\| | ||--------------- + ------------- for And\x > -\/ 3 , x < \/ 3 /| / || 2 2 | \\ /
/ ___\ |\/ 3 | ___ 3*asin|-----| \/ 2 \ 3 / ----- + ------------- 2 2
=
/ ___\ |\/ 3 | ___ 3*asin|-----| \/ 2 \ 3 / ----- + ------------- 2 2
sqrt(2)/2 + 3*asin(sqrt(3)/3)/2
Use the examples entering the upper and lower limits of integration.