Mister Exam

Other calculators


dx/(1-sinx)

Integral of dx/(1-sinx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |      1        
 |  ---------- dx
 |  1 - sin(x)   
 |               
/                
0                
$$\int\limits_{0}^{1} \frac{1}{1 - \sin{\left(x \right)}}\, dx$$
Integral(1/(1 - sin(x)), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. The integral of a constant times a function is the constant times the integral of the function:

    1. Don't know the steps in finding this integral.

      But the integral is

    So, the result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                               
 |                                
 |     1                    2     
 | ---------- dx = C - -----------
 | 1 - sin(x)                  /x\
 |                     -1 + tan|-|
/                              \2/
$$\int \frac{1}{1 - \sin{\left(x \right)}}\, dx = C - \frac{2}{\tan{\left(\frac{x}{2} \right)} - 1}$$
The graph
The answer [src]
           2      
-2 - -------------
     -1 + tan(1/2)
$$-2 - \frac{2}{-1 + \tan{\left(\frac{1}{2} \right)}}$$
=
=
           2      
-2 - -------------
     -1 + tan(1/2)
$$-2 - \frac{2}{-1 + \tan{\left(\frac{1}{2} \right)}}$$
-2 - 2/(-1 + tan(1/2))
Numerical answer [src]
2.40822344233583
2.40822344233583
The graph
Integral of dx/(1-sinx) dx

    Use the examples entering the upper and lower limits of integration.