Integral of sqrt(3-2x-x^2) dx
The solution
Detail solution
SqrtQuadraticRule(a=3, b=-2, c=-1, context=sqrt(-x**2 - 2*x + 3), symbol=x)
-
Now simplify:
2(x+1)−x2−2x+3+2asin(2x+21)
-
Add the constant of integration:
2(x+1)−x2−2x+3+2asin(2x+21)+constant
The answer is:
2(x+1)−x2−2x+3+2asin(2x+21)+constant
The answer (Indefinite)
[src]
/
|
| ______________ ______________
| / 2 /1 x\ / 2 /1 x\
| \/ 3 - 2*x - x dx = C + 2*asin|- + -| + \/ 3 - x - 2*x *|- + -|
| \2 2/ \2 2/
/
2x−x2−2x+3+2−x2−2x+3−2arcsin(4−2x−2)
The graph
Use the examples entering the upper and lower limits of integration.