Integral of sqrt(36-9x^2)-3 dx
The solution
Detail solution
-
Integrate term-by-term:
SqrtQuadraticRule(a=36, b=0, c=-9, context=sqrt(36 - 9*x**2), symbol=x)
-
The integral of a constant is the constant times the variable of integration:
∫((−1)3)dx=−3x
The result is: 2x36−9x2−3x+6asin(2x)
-
Now simplify:
23x4−x2−3x+6asin(2x)
-
Add the constant of integration:
23x4−x2−3x+6asin(2x)+constant
The answer is:
23x4−x2−3x+6asin(2x)+constant
The answer (Indefinite)
[src]
/
| ___________
| / ___________ \ / 2
| | / 2 | /x\ x*\/ 36 - 9*x
| \\/ 36 - 9*x - 3/ dx = C - 3*x + 6*asin|-| + ----------------
| \2/ 2
/
2x36−9x2−3x+6arcsin(2x)
The graph
Use the examples entering the upper and lower limits of integration.