Mister Exam

Other calculators


sqrt(36-9x^2)-3

Integral of sqrt(36-9x^2)-3 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2                        
  /                        
 |                         
 |  /   ___________    \   
 |  |  /         2     |   
 |  \\/  36 - 9*x   - 3/ dx
 |                         
/                          
-2                         
$$\int\limits_{-2}^{2} \left(\sqrt{- 9 x^{2} + 36} - 3\right)\, dx$$
Integral(sqrt(36 - 9*x^2) - 1*3, (x, -2, 2))
Detail solution
  1. Integrate term-by-term:

      SqrtQuadraticRule(a=36, b=0, c=-9, context=sqrt(36 - 9*x**2), symbol=x)

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                                
 |                                                      ___________
 | /   ___________    \                                /         2 
 | |  /         2     |                      /x\   x*\/  36 - 9*x  
 | \\/  36 - 9*x   - 3/ dx = C - 3*x + 6*asin|-| + ----------------
 |                                           \2/          2        
/                                                                  
$${{x\,\sqrt{36-9\,x^2}}\over{2}}-3\,x+6\,\arcsin \left({{x}\over{2}} \right)$$
The graph
The answer [src]
-12 + 6*pi
$$6\,\pi-12$$
=
=
-12 + 6*pi
$$-12 + 6 \pi$$
Numerical answer [src]
6.84955592153876
6.84955592153876
The graph
Integral of sqrt(36-9x^2)-3 dx

    Use the examples entering the upper and lower limits of integration.