2 / | | / ___________ \ | | / 2 | | \\/ 36 - 9*x - 3/ dx | / -2
Integral(sqrt(36 - 9*x^2) - 1*3, (x, -2, 2))
Integrate term-by-term:
SqrtQuadraticRule(a=36, b=0, c=-9, context=sqrt(36 - 9*x**2), symbol=x)
The integral of a constant is the constant times the variable of integration:
The result is:
Now simplify:
Add the constant of integration:
The answer is:
/ | ___________ | / ___________ \ / 2 | | / 2 | /x\ x*\/ 36 - 9*x | \\/ 36 - 9*x - 3/ dx = C - 3*x + 6*asin|-| + ---------------- | \2/ 2 /
Use the examples entering the upper and lower limits of integration.