Mister Exam

Other calculators

Integral of sqrt(sin(3x))cos(3x)+3 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                               
  /                               
 |                                
 |  /  __________             \   
 |  \\/ sin(3*x) *cos(3*x) + 3/ dx
 |                                
/                                 
0                                 
$$\int\limits_{0}^{1} \left(\sqrt{\sin{\left(3 x \right)}} \cos{\left(3 x \right)} + 3\right)\, dx$$
Integral(sqrt(sin(3*x))*cos(3*x) + 3, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. There are multiple ways to do this integral.

      Method #1

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        Now substitute back in:

      Method #2

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of is when :

            Now substitute back in:

          So, the result is:

        Now substitute back in:

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                        
 |                                                 3/2     
 | /  __________             \                2*sin   (3*x)
 | \\/ sin(3*x) *cos(3*x) + 3/ dx = C + 3*x + -------------
 |                                                  9      
/                                                          
$$\int \left(\sqrt{\sin{\left(3 x \right)}} \cos{\left(3 x \right)} + 3\right)\, dx = C + 3 x + \frac{2 \sin^{\frac{3}{2}}{\left(3 x \right)}}{9}$$
The graph
The answer [src]
         3/2   
    2*sin   (3)
3 + -----------
         9     
$$\frac{2 \sin^{\frac{3}{2}}{\left(3 \right)}}{9} + 3$$
=
=
         3/2   
    2*sin   (3)
3 + -----------
         9     
$$\frac{2 \sin^{\frac{3}{2}}{\left(3 \right)}}{9} + 3$$
3 + 2*sin(3)^(3/2)/9
Numerical answer [src]
3.01178068042735
3.01178068042735

    Use the examples entering the upper and lower limits of integration.