4 / | | _____ | \/ 5/4 | --------------------- dx | ________________ | / 2 | / 5*x | / ---- - 2*x + 4 | \/ 4 | / 0
Integral(sqrt(5/4)/sqrt(5*x^2/4 - 2*x + 4), (x, 0, 4))
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
The integral of a constant times a function is the constant times the integral of the function:
Don't know the steps in finding this integral.
But the integral is
So, the result is:
So, the result is:
Add the constant of integration:
The answer is:
/ | / | _____ | | \/ 5/4 ___ | 1 | --------------------- dx = C + \/ 5 * | -------------------- dx | ________________ | _________________ | / 2 | / 2 | / 5*x | \/ 16 - 8*x + 5*x | / ---- - 2*x + 4 | | \/ 4 / | /
4
/
|
___ | 1
\/ 5 * | -------------------- dx
| _________________
| / 2
| \/ 16 - 8*x + 5*x
|
/
0
=
4
/
|
___ | 1
\/ 5 * | -------------------- dx
| _________________
| / 2
| \/ 16 - 8*x + 5*x
|
/
0
sqrt(5)*Integral(1/sqrt(16 - 8*x + 5*x^2), (x, 0, 4))
Use the examples entering the upper and lower limits of integration.