Mister Exam

Other calculators

  • How to use it?

  • Integral of d{x}:
  • Integral of 1/1+e^x Integral of 1/1+e^x
  • Integral of tan^3(x)dx Integral of tan^3(x)dx
  • Integral of dx/e^(2*x) Integral of dx/e^(2*x)
  • Integral of xsqrt(1-x^2) Integral of xsqrt(1-x^2)
  • Identical expressions

  • (sqrt(one , twenty-five))/(sqrt(one , twenty-five *x^ two - two *x+ four))
  • ( square root of (1,25)) divide by ( square root of (1,25 multiply by x squared minus 2 multiply by x plus 4))
  • ( square root of (one , twenty minus five)) divide by ( square root of (one , twenty minus five multiply by x to the power of two minus two multiply by x plus four))
  • (√(1,25))/(√(1,25*x^2-2*x+4))
  • (sqrt(1,25))/(sqrt(1,25*x2-2*x+4))
  • sqrt1,25/sqrt1,25*x2-2*x+4
  • (sqrt(1,25))/(sqrt(1,25*x²-2*x+4))
  • (sqrt(1,25))/(sqrt(1,25*x to the power of 2-2*x+4))
  • (sqrt(1,25))/(sqrt(1,25x^2-2x+4))
  • (sqrt(1,25))/(sqrt(1,25x2-2x+4))
  • sqrt1,25/sqrt1,25x2-2x+4
  • sqrt1,25/sqrt1,25x^2-2x+4
  • (sqrt(1,25)) divide by (sqrt(1,25*x^2-2*x+4))
  • (sqrt(1,25))/(sqrt(1,25*x^2-2*x+4))dx
  • Similar expressions

  • (sqrt(1,25))/(sqrt(1,25*x^2+2*x+4))
  • (sqrt(1,25))/(sqrt(1,25*x^2-2*x-4))

Integral of (sqrt(1,25))/(sqrt(1,25*x^2-2*x+4)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  4                         
  /                         
 |                          
 |           _____          
 |         \/ 5/4           
 |  --------------------- dx
 |       ________________   
 |      /    2              
 |     /  5*x               
 |    /   ---- - 2*x + 4    
 |  \/     4                
 |                          
/                           
0                           
$$\int\limits_{0}^{4} \frac{\sqrt{\frac{5}{4}}}{\sqrt{\left(\frac{5 x^{2}}{4} - 2 x\right) + 4}}\, dx$$
Integral(sqrt(5/4)/sqrt(5*x^2/4 - 2*x + 4), (x, 0, 4))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Rewrite the integrand:

    2. The integral of a constant times a function is the constant times the integral of the function:

      1. Don't know the steps in finding this integral.

        But the integral is

      So, the result is:

    So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                               
 |                                        /                       
 |          _____                        |                        
 |        \/ 5/4                    ___  |          1             
 | --------------------- dx = C + \/ 5 * | -------------------- dx
 |      ________________                 |    _________________   
 |     /    2                            |   /               2    
 |    /  5*x                             | \/  16 - 8*x + 5*x     
 |   /   ---- - 2*x + 4                  |                        
 | \/     4                             /                         
 |                                                                
/                                                                 
$$\int \frac{\sqrt{\frac{5}{4}}}{\sqrt{\left(\frac{5 x^{2}}{4} - 2 x\right) + 4}}\, dx = C + \sqrt{5} \int \frac{1}{\sqrt{5 x^{2} - 8 x + 16}}\, dx$$
The answer [src]
        4                        
        /                        
       |                         
  ___  |           1             
\/ 5 * |  -------------------- dx
       |     _________________   
       |    /               2    
       |  \/  16 - 8*x + 5*x     
       |                         
      /                          
      0                          
$$\sqrt{5} \int\limits_{0}^{4} \frac{1}{\sqrt{5 x^{2} - 8 x + 16}}\, dx$$
=
=
        4                        
        /                        
       |                         
  ___  |           1             
\/ 5 * |  -------------------- dx
       |     _________________   
       |    /               2    
       |  \/  16 - 8*x + 5*x     
       |                         
      /                          
      0                          
$$\sqrt{5} \int\limits_{0}^{4} \frac{1}{\sqrt{5 x^{2} - 8 x + 16}}\, dx$$
sqrt(5)*Integral(1/sqrt(16 - 8*x + 5*x^2), (x, 0, 4))
Numerical answer [src]
1.92484730023841
1.92484730023841

    Use the examples entering the upper and lower limits of integration.