Mister Exam

Other calculators


xsqrt(1-x^2)

Integral of xsqrt(1-x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |       ________   
 |      /      2    
 |  x*\/  1 - x   dx
 |                  
/                   
0                   
$$\int\limits_{0}^{1} x \sqrt{1 - x^{2}}\, dx$$
Integral(x*sqrt(1 - x^2), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    SqrtQuadraticDenomRule(a=1, b=0, c=-1, coeffs=[-1, 0, 1, 0], context=(-x**3 + x)/sqrt(1 - x**2), symbol=x)

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                             
 |                                              
 |      ________             ________ /       2\
 |     /      2             /      2  |  1   x |
 | x*\/  1 - x   dx = C + \/  1 - x  *|- - + --|
 |                                    \  3   3 /
/                                               
$$\int x \sqrt{1 - x^{2}}\, dx = C + \sqrt{1 - x^{2}} \left(\frac{x^{2}}{3} - \frac{1}{3}\right)$$
The graph
The answer [src]
1/3
$$\frac{1}{3}$$
=
=
1/3
$$\frac{1}{3}$$
Numerical answer [src]
0.333333333333333
0.333333333333333
The graph
Integral of xsqrt(1-x^2) dx

    Use the examples entering the upper and lower limits of integration.