Mister Exam

Other calculators

Integral of sqrt(1+(tg(x/2))^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi                     
 --                     
 2                      
  /                     
 |                      
 |      _____________   
 |     /        2/x\    
 |    /  1 + tan |-|  dx
 |  \/           \2/    
 |                      
/                       
0                       
$$\int\limits_{0}^{\frac{\pi}{2}} \sqrt{\tan^{2}{\left(\frac{x}{2} \right)} + 1}\, dx$$
Integral(sqrt(1 + tan(x/2)^2), (x, 0, pi/2))
The answer [src]
 pi                     
 --                     
 2                      
  /                     
 |                      
 |      _____________   
 |     /        2/x\    
 |    /  1 + tan |-|  dx
 |  \/           \2/    
 |                      
/                       
0                       
$$\int\limits_{0}^{\frac{\pi}{2}} \sqrt{\tan^{2}{\left(\frac{x}{2} \right)} + 1}\, dx$$
=
=
 pi                     
 --                     
 2                      
  /                     
 |                      
 |      _____________   
 |     /        2/x\    
 |    /  1 + tan |-|  dx
 |  \/           \2/    
 |                      
/                       
0                       
$$\int\limits_{0}^{\frac{\pi}{2}} \sqrt{\tan^{2}{\left(\frac{x}{2} \right)} + 1}\, dx$$
Integral(sqrt(1 + tan(x/2)^2), (x, 0, pi/2))
Numerical answer [src]
1.76274717403909
1.76274717403909

    Use the examples entering the upper and lower limits of integration.