Mister Exam

Other calculators

Integral of sqrt(1+9*x^(4)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  8                 
  /                 
 |                  
 |     __________   
 |    /        4    
 |  \/  1 + 9*x   dx
 |                  
/                   
1                   
$$\int\limits_{1}^{8} \sqrt{9 x^{4} + 1}\, dx$$
Integral(sqrt(1 + 9*x^4), (x, 1, 8))
The answer (Indefinite) [src]
  /                                      _                          
 |                                      |_  /-1/2, 1/4 |    4  pi*I\
 |    __________          x*Gamma(1/4)* |   |          | 9*x *e    |
 |   /        4                        2  1 \   5/4    |           /
 | \/  1 + 9*x   dx = C + ------------------------------------------
 |                                       4*Gamma(5/4)               
/                                                                   
$$\int \sqrt{9 x^{4} + 1}\, dx = C + \frac{x \Gamma\left(\frac{1}{4}\right) {{}_{2}F_{1}\left(\begin{matrix} - \frac{1}{2}, \frac{1}{4} \\ \frac{5}{4} \end{matrix}\middle| {9 x^{4} e^{i \pi}} \right)}}{4 \Gamma\left(\frac{5}{4}\right)}$$
The graph
The answer [src]
               _                                           _                       
              |_  /-1/2, 1/4 |        pi*I\               |_  /-1/2, 1/4 |    pi*I\
2*Gamma(1/4)* |   |          | 36864*e    |   Gamma(1/4)* |   |          | 9*e    |
             2  1 \   5/4    |            /              2  1 \   5/4    |        /
------------------------------------------- - -------------------------------------
                 Gamma(5/4)                                4*Gamma(5/4)            
$$- \frac{\Gamma\left(\frac{1}{4}\right) {{}_{2}F_{1}\left(\begin{matrix} - \frac{1}{2}, \frac{1}{4} \\ \frac{5}{4} \end{matrix}\middle| {9 e^{i \pi}} \right)}}{4 \Gamma\left(\frac{5}{4}\right)} + \frac{2 \Gamma\left(\frac{1}{4}\right) {{}_{2}F_{1}\left(\begin{matrix} - \frac{1}{2}, \frac{1}{4} \\ \frac{5}{4} \end{matrix}\middle| {36864 e^{i \pi}} \right)}}{\Gamma\left(\frac{5}{4}\right)}$$
=
=
               _                                           _                       
              |_  /-1/2, 1/4 |        pi*I\               |_  /-1/2, 1/4 |    pi*I\
2*Gamma(1/4)* |   |          | 36864*e    |   Gamma(1/4)* |   |          | 9*e    |
             2  1 \   5/4    |            /              2  1 \   5/4    |        /
------------------------------------------- - -------------------------------------
                 Gamma(5/4)                                4*Gamma(5/4)            
$$- \frac{\Gamma\left(\frac{1}{4}\right) {{}_{2}F_{1}\left(\begin{matrix} - \frac{1}{2}, \frac{1}{4} \\ \frac{5}{4} \end{matrix}\middle| {9 e^{i \pi}} \right)}}{4 \Gamma\left(\frac{5}{4}\right)} + \frac{2 \Gamma\left(\frac{1}{4}\right) {{}_{2}F_{1}\left(\begin{matrix} - \frac{1}{2}, \frac{1}{4} \\ \frac{5}{4} \end{matrix}\middle| {36864 e^{i \pi}} \right)}}{\Gamma\left(\frac{5}{4}\right)}$$
2*gamma(1/4)*hyper((-1/2, 1/4), (5/4,), 36864*exp_polar(pi*i))/gamma(5/4) - gamma(1/4)*hyper((-1/2, 1/4), (5/4,), 9*exp_polar(pi*i))/(4*gamma(5/4))
Numerical answer [src]
511.144934716265
511.144934716265

    Use the examples entering the upper and lower limits of integration.