Integral of sqrt(1+9*x^(4)) dx
The solution
The answer (Indefinite)
[src]
/ _
| |_ /-1/2, 1/4 | 4 pi*I\
| __________ x*Gamma(1/4)* | | | 9*x *e |
| / 4 2 1 \ 5/4 | /
| \/ 1 + 9*x dx = C + ------------------------------------------
| 4*Gamma(5/4)
/
$$\int \sqrt{9 x^{4} + 1}\, dx = C + \frac{x \Gamma\left(\frac{1}{4}\right) {{}_{2}F_{1}\left(\begin{matrix} - \frac{1}{2}, \frac{1}{4} \\ \frac{5}{4} \end{matrix}\middle| {9 x^{4} e^{i \pi}} \right)}}{4 \Gamma\left(\frac{5}{4}\right)}$$
_ _
|_ /-1/2, 1/4 | pi*I\ |_ /-1/2, 1/4 | pi*I\
2*Gamma(1/4)* | | | 36864*e | Gamma(1/4)* | | | 9*e |
2 1 \ 5/4 | / 2 1 \ 5/4 | /
------------------------------------------- - -------------------------------------
Gamma(5/4) 4*Gamma(5/4)
$$- \frac{\Gamma\left(\frac{1}{4}\right) {{}_{2}F_{1}\left(\begin{matrix} - \frac{1}{2}, \frac{1}{4} \\ \frac{5}{4} \end{matrix}\middle| {9 e^{i \pi}} \right)}}{4 \Gamma\left(\frac{5}{4}\right)} + \frac{2 \Gamma\left(\frac{1}{4}\right) {{}_{2}F_{1}\left(\begin{matrix} - \frac{1}{2}, \frac{1}{4} \\ \frac{5}{4} \end{matrix}\middle| {36864 e^{i \pi}} \right)}}{\Gamma\left(\frac{5}{4}\right)}$$
=
_ _
|_ /-1/2, 1/4 | pi*I\ |_ /-1/2, 1/4 | pi*I\
2*Gamma(1/4)* | | | 36864*e | Gamma(1/4)* | | | 9*e |
2 1 \ 5/4 | / 2 1 \ 5/4 | /
------------------------------------------- - -------------------------------------
Gamma(5/4) 4*Gamma(5/4)
$$- \frac{\Gamma\left(\frac{1}{4}\right) {{}_{2}F_{1}\left(\begin{matrix} - \frac{1}{2}, \frac{1}{4} \\ \frac{5}{4} \end{matrix}\middle| {9 e^{i \pi}} \right)}}{4 \Gamma\left(\frac{5}{4}\right)} + \frac{2 \Gamma\left(\frac{1}{4}\right) {{}_{2}F_{1}\left(\begin{matrix} - \frac{1}{2}, \frac{1}{4} \\ \frac{5}{4} \end{matrix}\middle| {36864 e^{i \pi}} \right)}}{\Gamma\left(\frac{5}{4}\right)}$$
2*gamma(1/4)*hyper((-1/2, 1/4), (5/4,), 36864*exp_polar(pi*i))/gamma(5/4) - gamma(1/4)*hyper((-1/2, 1/4), (5/4,), 9*exp_polar(pi*i))/(4*gamma(5/4))
Use the examples entering the upper and lower limits of integration.